

Continuous Delivery
With Jenkins Workflow

By Andy Pemberton

»» Jenkins Workflow

»» Creating a Workflow

»» Building Your Workflow

»» Integrating Your Tools

»» Controlling Flow

»» Script Security, and more...

JENKINS WORKFLOW

Jenkins is an open-source automation tool with a powerful
plugin architecture that helps development teams automate
their software lifecycle. Jenkins is used to drive many
industry-leading companies’ continuous integration and
continuous delivery pipelines.

Jenkins Workflow is a first-class feature for managing
complex, multi-step pipelines. This open-source plugin for
Jenkins brings the power of the Jenkins domain and plugin
ecosystem into a scriptable Domain-Specific Language
(DSL). Best of all, like Jenkins core, Workflow is extensible
by third-party developers, supporting custom extensions to
the Workflow DSL and various options for plugin integration.

Workflow Stage View UI

This Refcard provides an overview and introduction to
Jenkins Workflow, as well as a full Workflow syntax
reference. It also provides a real-world delivery pipeline
example, building on the more basic Workflow snippets
from earlier examples.

INSTALLING JENKINS WORKFLOW
It is assumed you have already installed Jenkins—either via
the CloudBees Jenkins Platform or jenkins-ci.org. For Jenkins
Workflow, Jenkins version 1.580+ is required; version 1.609.1+
is recommended. To install Jenkins Workflow:

•	 Open Jenkins in your web browser

•	 Navigate to Manage Jenkins > Manage Plugins

•	 Navigate to the Available tab, filter by Workflow

•	 Select the Workflow Aggregator and install

•	 Restart Jenkins

This Refcard was written using Workflow version 1.10.
Installing the Workflow Aggregator installs all necessary
Workflow dependencies and a new job type called Workflow.

CRE ATING A WORKFLOW

Now that you have Jenkins running and have installed the
Workflow plugin, you are ready to create your first pipeline.
Create a new workflow by selecting New Item from the
Jenkins home page.

First, give your workflow a name (e.g., “hello-world-
flow”). Workflows are simple Groovy scripts, so let’s add
the obligatory Hello World. Add a workflow to the Workflow
script text area:

echo 'Hello world'

Now save your workflow, ensuring the Use Groovy Sandbox
option is checked (more details to follow on this setting).
Click Build Now to run your workflow.

EDITING YOUR WORKFLOW
Because workflows are simple text scripts, they are easy to

edit. As you’ve seen, workflows can be edited directly in the
Jenkins UI when configuring your workflow.

On-Demand Webinar
Orchestrating the Continuous Delivery

Process in Jenkins with Workflow

WATCH NOWWATCH NOW

www.cloudbees.com/workflow-webinar

218

C
O

N
T

E
N

T
S

G
et

 M
or

e
Re

fc
ar

dz
! V

is
it

 D
Zo

ne
.c

om
/r

ef
ca

rd
z

C
O

N
T

IN
U

O
U

S
 D

E
L

IV
E

R
Y

 W
IT

H
 J

E
N

K
IN

S
 W

O
R

K
F

L
O

W

© DZONE, INC. | DZONE.COM

BROUGHT TO YOU BY:

http://jenkins-ci.org
https://www.cloudbees.com/workflow-webinar
http://dzone.com/refcardz
http://dzone.com/refcardz
http://dzone.com
http://cloudbees.com

USING THE SNIPPET GENERATOR
To make editing your workflows easier, use the Snippet Generator.
The Snippet Generator is dynamically populated with the latest
Workflow steps. Depending on the plugins installed in your
environment, you may see more available steps.

LOADING EXTERNAL WORKFLOW SCRIPTS
Because workflows are text assets, they are ideal to store in

a source control system. Workflows can be edited in your
external IDE then loaded into Jenkins using the Workflow
script from SCM option.

BUILDING YOUR WORKFLOW

Now that you’ve created a workflow, let’s continue to build on
it. For a complex flow, you should leverage Jenkins’ job
scheduling queue:

node{ sh 'uname' }

The concept of a node should be familiar to Jenkins users: node
is a special step that schedules the contained steps to run by
adding them to Jenkins’ build queue. Even better, requesting a
node leverages Jenkins’ distributed build system. Of course, to
select the right kind of node for your build, the node element
takes a label expression:

node('unix && 64-bit'){ echo 'Hello world' }

The node step also creates a workspace: a directory specific
to this job where you can check out sources, run commands,
and do other work. Resource-intensive work in your pipeline
should occur on a node. You can also use the ws step to
explicitly ask for another workspace on the current slave,
without grabbing a new executor slot. Inside its body all
commands run in the second workspace.

CHECKING OUT CODE
Usually, your workflows will retrieve source code from your
source control server. Jenkins Workflow has a simple syntax
for retrieving source code, leveraging the many existing SCM
plugins for Jenkins.

checkout([$class: 'GitSCM', branches: [[name: '*/
master']], userRemoteConfigs: [[url: 'http://github.com/
cloudbees/todo-api.git']]])

If you happen to use a Git-based SCM like GitHub, there’s an
even further simplified syntax:

git 'https://github.com/cloudbees/todo-api.git'

RUNNING YOUR WORKFLOW
Because workflows are built as Jenkins jobs, they can be built
like other jobs. You can use the Build Now feature to manually
trigger your build on demand or set up triggers to execute your
pipeline based on certain events.

ADDING STAGES AND STEPS
Stages are usually the topmost element of Workflow syntax.
Stages allow you to group your build step into its component
parts. By default, multiple builds of the same workflow can run
concurrently. The stage element also allows you to control this
concurrency:

stage 'build'
 node{ … }
stage name: 'test', concurrency: 3
 node{ … }
stage name: 'deploy', concurrency: 1
 node{ … }

In this example, we have set a limit of three concurrent
executions of the test stage and only one execution of the
deploy stage. You will likely want to control concurrency to
prevent collisions (for example, deployments).

Newer builds are always given priority when entering a throttled
stage; older builds will simply exit early if they are preempted.

GENERAL BUILD STEPS
Within your stages, you will add build steps. Just like with
free-style Jenkins jobs, build steps make up the core logic of
your pipeline. Jenkins Workflow supports any compatible Build
Step and populates the Snippet Generator with all available
Build Steps in your Jenkins environment.

2

© DZONE, INC. | DZONE.COM

CONTINUOUS DELIVERY
WITH JENKINS WORKFLOW

http://dzone.com/refcardz
http://dzone.com
http://cloudbees.com

step([$class: 'JavadocArchiver', javadocDir: 'target/
resources/javadoc', keepAll: false])

step([$class: 'Fingerprinter', targets: 'target/api.
war'])

SCRIPTING
Jenkins Workflow supports executing shell (*nix) or batch
scripts (Windows) just like free-style jobs:

sh 'sleep 10'
bat 'timeout /t 10'

Scripts can integrate with various other tools and frameworks
in your environment—more to come on tools in the next section.

INTEGR ATING YOUR TOOLS

For a real-life workflow, Jenkins needs to integrate with other
tools, jobs, and the underlying environment.

TOOLS
Jenkins has a core capability to integrate with tools. Tools can
be added and even automatically installed on your build nodes.
From Workflow, you can simply use the tool DSL syntax:

def mvnHome = tool 'M3'
sh "${mvnHome}/bin/mvn -B verify"

In addition to returning the path where the tool is installed, the
tool command ensures the named tool is installed on the
current node.

GLOBAL VARIABLES
The env global variable allows accessing environment variables
available on your nodes:

echo env.PATH

Because the env variable is global, changing it directly is
discouraged as it changes the environment globally, so the
withEnv syntax is preferred (see example in the Workflow Full
Syntax Reference below).

The currentBuild global variable can retrieve and update the
following properties:

currentBuild.result
currentBuild.displayName
currentBuild.description

EXISTING JOBS
Existing jobs can be triggered from your workflow via the build
command (e.g., build 'existing-freestyle-job'). You can also
pass parameters to your external jobs as follows:

def job = build job: 'say-hello', parameters: [[$class:
'StringParameterValue', name: 'who', value: 'DZone
Readers']]

CONTROLLING FLOW

Because Jenkins Workflow is based on the Groovy language,
there are many powerful flow control mechanisms familiar to
developers and operations teams alike. In addition to standard
Groovy flow control mechanisms like if statements, try/catch,
and closures, there are several flow control elements specific to
Workflow.

HANDLING APPROVALS
Jenkins Workflow supports approvals, manual or automated,
through the input step:

input 'Are you sure?'

With the submitter parameter, the input step integrates

Jenkins’ security system to restrict the allowed approvers.

The input step in Jenkins Workflow Stage View UI:

TIMING
Timeouts allow workflow creators to set an amount of time to
wait before aborting a build:

timeout(time: 30, unit: 'SECONDS') { … }

Parallel stages add a ton of horsepower to Workflow, allowing
simultaneous execution of build steps on the current node or
across multiple nodes, thus increasing build speed:

parallel 'quality scan': {
 node {sh 'mvn sonar:sonar'}
}, 'integration test': {
 node {sh 'mvn verify'}
}

Jenkins can also wait for a specific condition to be true:

waitUntil { … }

HANDLING ERRORS
Jenkins Workflow has several features for controlling flow by
managing error conditions in your pipeline. Of course, because
Workflow is based on Groovy, standard try/catch semantics apply:

try {

} catch (e) {

}

3

© DZONE, INC. | DZONE.COM

CONTINUOUS DELIVERY
WITH JENKINS WORKFLOW

http://dzone.com/refcardz
http://dzone.com
http://cloudbees.com

Workflow creators can also create error conditions based on
custom logic, if needed:

if(!sources) {
 error 'No sources'
}

Jenkins can also retry specific Workflow steps if there is
variability in the steps for some reason:

retry(5) { … }

SCRIPT SECURITY

As you've seen, Jenkins Workflow is quite powerful. Of course,
with power comes risk, so Jenkins Workflow has a robust
security and approval framework that integrates with Jenkins

core security.

By default, when creating workflows as a regular user (that
is, without the Overall/RunScripts permission), the Groovy
Sandbox is enabled. When the Sandbox is enabled, Workflow
creators will only be allowed to use pre-approved methods in
their flow.

When adding pre-approved methods to a workflow, script
changes do not require approval. When adding a new method
(such as a Java API), users will see a RejectedAccessException
and an administrator will be prompted to approve usage of the

specific new API or method.

Deselecting the Use Groovy Sandbox option changes this
behavior. When the Sandbox is disabled, workflow edits
require administrator approval. Each change or update by a
non-administrator user requires approval by an administrator.
Users will see an UnnaprovedUsageException until their script
is approved. Approving individual edits may not scale well, so
the Groovy Sandbox is recommended for larger environments.

ACCESSING FILES

During your workflow development, you will very likely need to
read and write files in your workspace.

STASHING FILES
Stashing files between stages is a convenient way to keep files from
your workspace in order to share them between different nodes:

stage 'build'
 node{
 git 'https://github.com/cloudbees/todo-api.git'
 stash includes: 'pom.xml', name: 'pom'
 }
stage name: 'test', concurrency: 3
 node {
 unstash 'pom'
 sh 'cat pom.xml'
 }

Stash can be used to prevent cloning the same files from source
control during different stages, while also ensuring the same
exact files are used during compilation and tested in later
pipeline stages.

ARCHIVING
Like other Jenkins job types, workflows can archive their artifacts:

archive includes: '*.jar, excludes: '*-sources.jar'

Archives allow you to maintain binaries from your build in
Jenkins for easy access later. Unlike stash, archive keeps
artifacts around after a workflow execution is complete
(whereas stash is temporary).

Beyond stashing and archiving files, the following Workflow
elements also work with the file system (more details in full
syntax reference):

pwd()
dir(''){}
writeFile file: 'target/results.txt', text: ''
readFile 'target/results.txt'
fileExists 'target/results.txt'

SC A LING YOUR WORKFLOW

As you build more of your DevOps pipelines with Jenkins
Workflow, your needs will get more complex. The CloudBees
Jenkins Platform helps scale Jenkins Workflow for more

complex uses.

CHECKPOINTS
One powerful aspect of the CloudBees extensions to Jenkins
Workflow is the checkpoint syntax. Checkpoints allow
capturing the workspace state so it can be reused as a starting
point for subsequent runs:

checkpoint 'Functional Tests Complete'

Checkpoints are ideal to use after a longer portion of your
workflow has run (for example, a robust functional test suite).

WORKFLOW TEMPLATES
The CloudBees Jenkins Platform has a robust template feature.
CloudBees Jenkins Platform users can create template build
steps, jobs, folders, and publishers. Since Workflows are a new
job type, authors can create Workflow templates so that similar

4

© DZONE, INC. | DZONE.COM

CONTINUOUS DELIVERY
WITH JENKINS WORKFLOW

http://dzone.com/refcardz
http://dzone.com
http://cloudbees.com

pipelines can simply leverage the same Workflow job template.
More information on Templates is available on the CloudBees
website:

https://www.cloudbees.com/products/cloudbees-jenkins-
platform/enterprise-edition/features/templates-plugin

TYING IT TOGETHER: EX AMPLE PIPELINE

The following workflow is an example tying together several of
the Workflow features we learned earlier. While not
exhaustive, it provides a basic but complete pipeline that will
help jump-start your workflow development:

stage 'build'
node {
 git 'https://github.com/cloudbees/todo-api.git'
 withEnv(["PATH+MAVEN=${tool 'm3'}/bin"]) {
 sh "mvn -B –Dmaven.test.failure.ignore=true clean
package"
 }
 stash excludes: 'target/', includes: '**', name:
'source'
}
stage 'test'
parallel 'integration': {
 node {
 unstash 'source'
 withEnv(["PATH+MAVEN=${tool 'm3'}/bin"]) {
 sh "mvn clean verify"
 }
 }
}, 'quality': {
 node {
 unstash 'source'
 withEnv(["PATH+MAVEN=${tool 'm3'}/bin"]) {
 sh "mvn sonar:sonar"
 }
 }
}
stage 'approve'
timeout(time: 7, unit: 'DAYS') {
 input message: 'Do you want to deploy?', submitter:
'ops'
}
stage name:'deploy', concurrency: 1
node {
 unstash 'source'
 withEnv(["PATH+MAVEN=${tool 'm3'}/bin"]) {
 sh "mvn cargo:deploy"
 }
}

DOCKER WITH WORKFLOW

The Docker Workflow plugin exposes a docker global variable
that provides a DSL for common Docker operations, only
requiring a Docker client on the executor running the steps
(use a label in your node step to target a Docker-enabled slave).

By default, the docker global variable connects to the local
Docker daemon. You may use the docker.withServer step to
connect to a remote Docker host. The image step provides a
handle to a specific Docker image and allows executing several
other image-related steps, including the image.inside step.
The inside step will start up the specified container and run a

block of steps in that container:

docker.image('maven:3.3.3-jdk8').inside('-v ~/.m2/repo:/
m2repo') {
 sh 'mvn -Dmaven.repo.local=/m2repo clean package'
}

When the steps are complete, the container will be stopped
and removed. There are many more features of the Docker
Workflow plugin; additional steps are outlined in the Workflow
Full Syntax Reference.

E XTENDING WORKFLOW

Like all Jenkins features, Workflow relies on Jenkins’ extensible
architecture, allowing developers to extend Workflow’s features.

PLUGIN COMPATIBILITY
There are a large number of existing plugins for Jenkins.
Many of these plugins integrate with Workflow as build steps,
wrappers, and so on. Plugin maintainers must ensure their
plugins are Workflow-compatible. The Jenkins community has
documented the steps to ensure compatibility. More details on
plugin development and Workflow compatibility are on the
jenkins-ci.org Wiki:

https://wiki.jenkins-ci.org/display/JENKINS/Plugin+tutorial

CUSTOM DSL
Beyond compatibility, plugin maintainers can also add specific
statements to the Workflow DSL for their plugins’ behaviors.
The Jenkins community has documented the steps to take to
add plugin-specific statements to the Workflow DSL. Examples
include the Credentials Binding Plugin, which contributes the
withCredentials statement.

WORKFLOW FULL SYNTA X REFERENCE

Following is a full Jenkins Workflow syntax reference. Of
course, as you add plugins—or as plugins are updated—new
Workflow Script elements will become available in your
environment. The Workflow snippet generator and UI will
automatically add these and any associated help text so you
know how to use them!

BASICS
WORKFLOW SCRIPT EXAMPLE(S)

stage
Stage

stage 'build'
stage concurrency: 3, name:
'test'a

node
Allocate a node

node('ubuntu') {
 // some block
}

ws
Allocate a workspace

ws('sub-workspace') {
 // some block
}

5

© DZONE, INC. | DZONE.COM

CONTINUOUS DELIVERY
WITH JENKINS WORKFLOW

https://www.cloudbees.com/products/cloudbees-jenkins-platform/enterprise-edition/features/templates-plugin%20
https://www.cloudbees.com/products/cloudbees-jenkins-platform/enterprise-edition/features/templates-plugin%20
https://wiki.jenkins-ci.org/display/JENKINS/Plugin%2Btutorial%20
http://dzone.com/refcardz
http://dzone.com
http://cloudbees.com

WORKFLOW SCRIPT EXAMPLE(S)

echo
Print a message

echo 'Hello Bees'

batch
Windows batch script

bat 'dir'

sh
Shell script

sh 'mvn -B verify'

checkout
General SCM

checkout([$class: 'GitSCM',
branches: [[name: '*/master']],
doGenerateSubmoduleConfigurations:
false, extensions: [],
submoduleCfg: [],
userRemoteConfigs: [[url: 'http://
github.com/cloudbees/todo-api.
git']]])

git
Git SCM

git 'http://github.com/cloudbees/
todo-api.git'

svn
Subversion SCM

svn 'svn://svn.cloudbees.com/repo/
trunk/todo-api'

step
General build step

step([$class:
'JUnitResultArchiver', testResults:
'target/test-reports/*.xml'])

step([$class: 'Mailer',
notifyEveryUnstableBuild: true,
recipients: 'info@cloudbees.com',
sendToIndividuals: false])

wrap wrap([$class:'Xvnc', useXauthority:
true]){
 sh 'make selenium-tests'
}

tool
Install a tool

def mvnHome = tool name: 'M3'
sh "${mvnHome}/bin/mvn -B verify"

tool name: 'jgit', type: 'hudson.
plugins.git.GitTool'

mail
Send an e-mail

mail, body: 'Uh oh.', charset: '',
from: '', mimeType: '', replyTo: '',
subject: 'Build Failed!', to: 'dev@
cloudbees.com'

ADVANCED

WORKFLOW SCRIPT EXAMPLE(S)

build
Build an existing job

build job: 'hello-world'

build job: 'hello-world',
parameters: [[$class:
'StringParameterValue', name:
'who', value: 'World']]

checkpoint
Capture the execution
state so that it can be
restarted later

checkpoint 'testing-complete'

withEnv
Set environment
variables in a scope

withEnv(["PATH+MAVEN=${tool 'M3'}/
bin"]) {
 sh 'mvn -B verify'
}

load
Evaluate a Groovy source
file into the workflow

load 'deploymentMethods.groovy'

FILE SYSTEM
WORKFLOW SCRIPT EXAMPLE(S)

dir
Change Directory

dir('src') {
 // some block
}

pwd
Get current Directory

def dir = pwd()
echo dir

stash
Stash files for use later in
the build

stash excludes: 'target/*-sources.
jar', includes: 'target/*', name:
'source'

unstash
Restore files previously
stashed

unstash 'source'

archive
Archive artifacts

archive includes:'*.jar',
excludes:'*-sources.jar'

writeFile
Write file to Workspace

writeFile file: 'target/result.
txt', text: 'Fail Whale'

readFile
Read file from the
workspace

def file = readFile 'pom.xml'

fileExists
Verify if file exists in
workspace

if(fileExists 'src/main/java/Main.
java') {
 // some block
}

FLOW CONTROL

WORKFLOW SCRIPT EXAMPLE(S)

sleep
Sleep

sleep 60
sleep time: 1000, unit:
'NANOSECONDS'

waitUntil
Wait for condition

waitUntil {
 // some block
}

retry
Retry body up to N times

retry(5) {
 // some block
}

input
Pause for manual or
automated intervention

input 'Are you sure?'

input message: 'Are you sure?',
ok: 'Deploy', submitter: 'qa-team'

parallel
Execute sub-flows in
parallel

parallel “quality scan”: {
 // do something
}, “integration test”: {
 // do something else
},
failFast: true

timeout
Execute body without a
timeout

timeout(time: 30, unit: 'SECONDS')
{
 // some block
}

error
Stop build with an error

error 'No sources'

6

© DZONE, INC. | DZONE.COM

CONTINUOUS DELIVERY
WITH JENKINS WORKFLOW

http://dzone.com/refcardz
http://dzone.com
http://cloudbees.com

Andy Pemberton leads CloudBees' Solution Architecture team
and has many years' experience helping organizations ship
higher quality software. Andy and his team work with CloudBees
customers and internally with CloudBees product, sales, and
engineering teams to help customers understand and start using
the CloudBees Jenkins Platform. Based on his real-world DevOps

and software delivery experience, Andy provides a realistic, practical approach
to helping CloudBees customers implement Continuous Delivery with Jenkins.
Andy speaks, blogs, and writes regularly in various outlets and industry events.

© DZONE, INC. | DZONE.COM© DZONE, INC. | DZONE.COM© DZONE, INC. | DZONE.COM

ABOUT THE AUTHOR ADDITIONAL RESOURCES

DZONE, INC.
150 PRESTON EXECUTIVE DR.
CARY, NC 27513

888.678.0399
919.678.0300

REFCARDZ FEEDBACK WELCOME
refcardz@dzone.com

SPONSORSHIP OPPORTUNITIES
sales@dzone.com

Copyright © 2015 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher. VERSION 1.0 $7.95

DZone communities deliver over 6 million pages each month to more than 3.3 million software
developers, architects and decision makers. DZone offers something for everyone, including news,
tutorials, cheat sheets, research guides, feature articles, source code and more.

"DZone is a developer's dream," says PC Magazine.

BROWSE OUR COLLECTION OF 250+ FREE RESOURCES, INCLUDING:
RESEARCH GUIDES: Unbiased insight from leading tech experts

REFCARDZ: Library of 200+ reference cards covering the latest tech topics

COMMUNITIES: Share links, author articles, and engage with other tech experts

JOIN NOW

7

CREDITS:
Editor: G. Ryan Spain | Designer: Yassee Mohebbi | Production: Chris Smith | Sponsor Relations: Chris Brumfield | Marketing: Chelsea Bosworth

Jenkins Workflow Plugin Wiki:
https://wiki.jenkins-ci.org/display/JENKINS/Workflow+Plugin

Jenkins Workflow Plugin on GitHub:
https://github.com/jenkinsci/workflow-plugin

Cloudbees CD With Jenkins Workflow:
https://www.cloudbees.com/products/jenkins-enterprise/workflow

Jenkins Workflow Additional Tutorial:
https://github.com/jenkinsci/workflow-plugin/blob/master/TUTORIAL.md

CONTINUOUS DELIVERY
WITH JENKINS WORKFLOW

image.imageName()
Provides image name
prefixed with registry
info

sh "docker pull ${image.
imageName()}"

container.id
ID of running container

sh "docker logs ${container.id}"

container.stop
Stops and removes
container

container.stop()

build
Builds Docker image

docker.build("cb/
api:${tag}","target")

withServer
Runs block on given
Docker server

docker.withServer('tcp://swarm.
cloudbees.com:2376', 'swarm-certs')
{
 // some block
}

withRegistry
Runs block using
specified Docker registry

docker.withRegistry('https://
registry.cloudbees.com/', 'docker-
registry-login') {
 // some block
}

withTool
Specifies name of
Docker client to use

docker.withTool('toolName') {
 // some block
}

DOCKER
WORKFLOW SCRIPT EXAMPLE(S)

image
Provides a handle to
image

def image = docker.
image('maven:3.3.3-jdk8')

image.inside
Runs steps inside image

image.inside('-v /repo:/repo') {
 // some block
}

image.pull
Pulls image

image.pull()

image.push
Push image to registry

image.push()

image.push("latest")

image.run
Runs Docker image and
returns container

def container = image.run("--name
my-api -p 8080:8080")

container.stop()

image.withRun
Runs image and auto
stops container

image.withRun {api -> testImg.
inside("--link=${api.id}:api")
 {
 // some block
 }
}

image.tag
Records tag of image

image.tag("${tag}", false)

mailto:refcardz%40dzone.com?subject=
mailto:sales%40dzone.com?subject=
http://dzone.com
http://dzone.com
http://dzone.com/refcardz
https://wiki.jenkins-ci.org/display/JENKINS/Workflow+Plugin
https://github.com/jenkinsci/workflow-plugin
https://www.cloudbees.com/products/jenkins-enterprise/workflow
https://github.com/jenkinsci/workflow-plugin/blob/master/TUTORIAL.md

Continuous Delivery
Powered by Jenkins

Your DevOps Foundation

The Enterprise Jenkins Company

Learn more: www.cloudbees.com/jenkins-workflow

https://www.cloudbees.com/jenkins-workflow

