

Tim Berglund

Gradle Beyond the Basics

Gradle Beyond the Basics
by Tim Berglund

Copyright © 2013 Gradle, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Mike Loukides and Meghan Blanchette
Production Editor: Kara Ebrahim
Proofreader: Kara Ebrahim

Cover Designer: Randy Comer
Interior Designer: David Futato
Illustrator: Rebecca Demarest

July 2013: First Edition

Revision History for the First Edition:

2013-07-15: First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449304676 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly
Media, Inc. Gradle Beyond the Basics, the image of a Belgian shepherd dog, and related trade dress are
trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trade‐
mark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

ISBN: 978-1-449-30467-6

[LSI]

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449304676

Table of Contents

Preface. v

1. File Operations. 1
Copy Task 1

Transforming Directory Structure 3
Renaming Files During Copy 3

Filtering and Transforming Files 4
Keyword Expansion 4
Filtering Line by Line 6
Filtering File by File 8

The File Methods 9
file() 9
files() 11
fileTree() 12

The FileCollection Interface 12
Converting to a Set 14
Converting to a Path String 14
Module Dependencies as FileCollections 15
Adding and Subtracting FileCollections 16
SourceSets as FileCollections 17

Lazy Files 18
Conclusion 19

2. Custom Plug-Ins. 21
Plug-In Philosophy 21
The Plug-In API 22
The Example Plug-In 22
Setup 23
Sketching Out Your Plug-In 24

iii

Custom Liquibase Tasks 24
Applying Yourself 25
Extensions 26

Packaging a Plug-In 31
Conclusion 33

3. Build Hooks. 35
The Gradle Lifecycle: A Review 35
Advising the Build Graph 36
Advising Project Evaluation 36

Global Project Loading and Evaluation Hooks 38
Build Finished 39

Rules 41
Creating a Rule 42
Dealing with Imperative Rule Code 43
Generalizing Rules Beyond Tasks 45

Conclusion 46

4. Dependency Management. 47
What Is Dependency Management? 47
Dependency Concepts 48

Configurations 49
Module Dependencies 51
Dynamic Versions 53
File Dependencies 53
Project Dependencies 54
Internal Dependencies 55

Repositories: Dependency Resolution 56
Maven Repositories 56
Ivy 59
Repository Credentials 60
Static Dependencies 61

Buildscript Dependencies 63
Dependency Caching 64
Configuring Resolution Strategy 66

Failing on Version Conflict 66
Forcing Versions 66
Cache Expiration 67

Conclusion 67

Afterword. 69

iv | Table of Contents

Preface

Welcome to Gradle Beyond the Basics, the second book in the O’Reilly Gradle series.
This book picks up from its predecessor, Building and Testing with Gradle, and takes
you further into the Gradle programming model. We offer the recipes, techniques, and
syntax that make Gradle more than just free-form scripting, and place your build instead
on the foundation of a strong domain model. The difference is, it is your domain model,
not a generic one from some build tool that is ignorant of the specifics of your project.

Having introduced you to the basic elements of Gradle in the first book, we can begin
to explore the tool’s capabilities a bit more deeply. We will cover four discrete areas of
Gradle functionality: file operations, custom Gradle plug-ins, build lifecycle hooks, and
dependency management. We assume that you are familiar with the basics of how to
use Gradle, and with a keen respect of your time and interest, offer no further intro‐
duction to the mechanics of simple Gradle builds. If you are brand new to the topic,
you should definitely read Building and Testing first.

The Gradle APIs are rich, the possibilities for DSLs matching your domain are abundant,
and the path towards finally having a build system that conforms to your product is
clear. Let’s move forward.

Conventions Used in This Book
The following typographical conventions are used in this book:
Italic

Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

v

JohnHunter
高亮

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Safari® Books Online
Safari Books Online is an on-demand digital library that delivers
expert content in both book and video form from the world’s lead‐
ing authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research, prob‐
lem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi‐
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Pro‐
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol‐
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)

vi | Preface

http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/

707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/gradle-btb.

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
I would like to extend my thanks to my team of excellent tech editors who contributed
ably to the quality of this book: Jason Porter, Spencer Allain, Darin Pope, and Rod Hilton.
Special thanks go to Luke Daley, who didn’t just edit, but provided significant rewrites
to the chapter on dependency management when the original version didn’t quite cap‐
ture the spirit of the subject matter. Luke was also a willing helper on the other end of
a Skype chat window on more than one occasion when I had a technical question about
some Gradle internal or other. He is a valued friend with whom I look forward to more
collaboration in the future.

Additional thanks go to my friend, Matthew McCullough, for his early contributions to
the chapter on Build Hooks. Matthew has a long history in the build tool space, and his
insights into build metaprogramming were no small help in getting that chapter right.

Thanks of course to the longsuffering Hans Docktor, who waited perhaps a year longer
than expected to get this book. It is likewise always a pleasure to work with him and to
call him my friend.

I am obligated to acknowledge my editor, Meghan Blanchette, but in this case the ob‐
ligation is one I receive willingly. If Meghan and I work together on another book, she
may want to create some automation around the emails she sends to me asking if I am
going to keep my latest deadline, so frequent are those checkups. I will still enjoy hearing
from her.

Preface | vii

http://oreil.ly/gradle-btb
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

I tend to write very early in the morning, so my wife, Kari, never actually saw me work
on this volume. She did, however, experience more than one spate of her husband falling
asleep at 9:00 pm for many days on end so he could wake up early the next day and
write. My thanks, and her name in print, is the least I can offer.

To Hannah and Sarah: Proverbs 14:26.

viii | Preface

CHAPTER 1

File Operations

If the most essential operation in a build is to compile code, then surely the second most
essential operation is to copy files. A real-world build routinely copies files from place
to place, recursing directory trees, pattern-maching filenames, and performing string
operations on file content. Gradle exposes a few methods, task types, and interfaces to
make file operations flexible and easy. Collectively, these form Gradle’s file API.

To explore the file API, we’ll start with practical examples of how to use the Copy task.
We’ll move from there to an exploration of the file-related methods of the Project
object, which are available to you anywhere inside a Gradle build. In the process, we’ll
learn about the FileCollection interface. Finally, we’ll look at the ways the file API is
used by common Gradle plug-ins—giving us a richer view of otherwise taken-for-
granted structures like JAR files and SourceSets.

Copy Task
The Copy task is a task type provided by core Gradle. At execution, a copy task copies
files into a destination directory from one or more sources, optionally transforming
files as it copies. You tell the copy task where to get files, where to put them, and how
to filter them through a configuration block. The simplest copy task configuration looks
like Example 1-1.

Example 1-1. A trivial copy task configuration
task copyPoems(type: Copy) {
 from 'text-files'
 into 'build/poems'
}

1

JohnHunter
高亮

The example assumes there is a directory called text-files containing the text of some
poems. Running the script with gradle copyPoems puts those files into the build/
poems directory, ready for processing by some subsequent step in the build.

By default, all files in the from directory are included in the copy operation. You can
change this by specifying patterns to include or patterns to exclude. Inclusion and ex‐
clusion patterns use Ant-style globbing, where ** will recursively match any subdirec‐
tory name, and * will match any part of a filename. Include calls are exclusive by default;
that is, they assume that all files not named in the include pattern should be excluded.
Similarly, exclude calls are inclusive by default—they assume that all files not named in
the exclude pattern should be included by default.

When an exclude is applied along with an include, Gradle prioritizes the exclude. It
collects all of the files indicated by the include, then removes all of the files indicated by
the exclude. As a result, your include and exclude logic should prefer more inclusive
include patterns which are then limited by less inclusive exclude patterns.

If you can’t express your include or exclude rules in a single pattern, you can call exclude
or include multiple times in a single Copy task configuration (Example 1-2). You can
also pass a comma-separated list of patterns to a single method call (Example 1-3).

Example 1-2. A copy task that copies all the poems except the one by Henley
task copyPoems(type: Copy) {
 from 'text-files'
 into 'build/poems'
 exclude '**/*henley*'
}

Example 1-3. A copy task that only copies Shakespeare and Shelley
task copyPoems(type: Copy) {
 from 'text-files'
 into 'build/poems'
 include '**/sh*.txt'
}

A common build operation is to gather files from several source directories and copy
them into one place. To do this, simply include more than one from configuration, as
in Example 1-4. Each call to from can even have its own sets of inclusions and exclusions
if needed.

Example 1-4. A copy task taking files from more than one source directory
task complexCopy(type: Copy) {
 from('src/main/templates') {
 include '**/*.gtpl'
 }
 from('i18n')

2 | Chapter 1: File Operations

JohnHunter
高亮

JohnHunter
高亮

JohnHunter
高亮

 from('config') {
 exclude 'Development*.groovy'
 }
 into 'build/resources'
}

Transforming Directory Structure
The outcome of Example 1-4 is to put all source files into one flat directory, build/
resources. Of course you may not want to flatten all of the source directories; you might
instead want to preserve some of the structure of the source directory trees or even map
the source directories onto a new tree. To do this, we can simply add additional calls to
into inside the from configuration closures. This is shown in Example 1-5.

Example 1-5. A copy task mapping source directory structure onto a new destination
structure
task complexCopy(type: Copy) {
 from('src/main/templates') {
 include '**/*.gtpl'
 into 'templates'
 }
 from('i18n')
 from('config') {
 exclude 'Development*.groovy'
 into 'config'
 }
 into 'build/resources'
}

Note that a top-level call to into is still required—the build file will not run without it
—and the nested calls to into are all relative to the path of that top-level configuration.

If the number of files or the size of the files being copied is large, then a copy task could
be an expensive build operation at execution time. Gradle’s incremental build feature
helps reduce the force of this problem. Gradle will automatically incur the full execution
time burden on the first run of the build, but will keep subsequent build times down
when redundant copying is not necessary.

Renaming Files During Copy
If your build has to copy files around, there’s a good chance it will have to rename files
in the process. Filenames might need to be tagged to indicate a deployment environ‐
ment, or might need to be renamed to some standard form from an environment-
specific origin, or might be renamed according to a product configuration specified by
the build. Whatever the reason, Gradle gives you two flexible ways to get the job done:
regular expressions and Groovy closures.

Copy Task | 3

JohnHunter
高亮

To rename files using regular expressions, we can simply provide a source regex and a
destination filename. The source regex will use groups to capture the parts of the
filename that should be carried over from the source to the destination. These groups
are expressed in the destination filename with the $1/$2 format. For example, to copy
some configuration-specific files from a source to a staging directory, see Example 1-6.

Example 1-6. Renaming files using regular expressions
task rename(type: Copy) {
 from 'source'
 into 'dest'
 rename(/file-template-(\d+)/, 'production-file-$1.txt')
}

To rename files programmatically, we can pass a closure to the rename method
(Example 1-7). The closure takes a single parameter, which is the name of the original
file. The return value of the closure is the name of the renamed file.

Example 1-7. Renaming files programmatically
task rename(type: Copy) {
 from 'source'
 into 'dest'
 rename { fileName ->
 "production-file${(fileName - 'file-template')}"
 }
}

In Groovy, subtracting one string from another string removes the first
occurence of the second string from the first. So, 'one two one four'
- 'one' will return 'two one four'. This is a quick way to perform
a common kind of string processing.

Filtering and Transforming Files
Often the task of a build is not just to copy and rename files, but to perform transfor‐
mations on the content of the copied files. Gradle has three principal ways of doing this
job: the expand() method, the filter() method, and the eachFile() method. We’ll
consider these in turn.

Keyword Expansion
A common build use case is to copy a set of configuration files into a staging area and
to replace some strings in the files as they’re copied. A particular configuration file may
contain a substantial set of parameters that do not vary by deployment environment,
plus a smaller set of parameters that do. As this configuration file is staged from its

4 | Chapter 1: File Operations

JohnHunter
高亮

JohnHunter
高亮

working directory into the build directory, it would be convenient to replace the
deployment-variable strings as a part of the copy. The expand() method is how Gradle
does this.

The expand() method takes advantage of the Groovy SimpleTemplateEngine class.
SimpleTemplateEngine adds a keyword substitution syntax to text files similar to the
syntax of Groovy string interpolation. Any string inside curly braces preceded by a dollar
sign (${string}) is a candidate for substitution. When declaring keyword expansion
in a copy task, you must pass a map to the expand() method (Example 1-8). The keys
in the map will be matched to the expressions inside curly braces in the copied file,
which will be replaced with the map’s corresponding values.

Example 1-8. Copying a file with keyword expansion
versionId = '1.6'

task copyProductionConfig(type: Copy) {
 from 'source'
 include 'config.properties'
 into 'build/war/WEB-INF/config'
 expand([
 databaseHostname: 'db.company.com',
 version: versionId,
 buildNumber: (int)(Math.random() * 1000),
 date: new Date()
])
}

SimpleTemplateEngine has some other features that are exposed to
you when you use the expand() method inside a copy task. Consult
the online documentation for more details.

Note that the expression passed to the expand() method is a Groovy map literal—it is
enclosed by square brackets, and a series of key/value pairs are delimited by commas,
with the key and the value themselves separated by colons. In this example, the task
doing the expanding is dedicated to preparing a configuration file for the production
configuration, so the map can be expressed as a literal. A real-world build may opt for
this approach, or may reach out to other, environment-specific config file fragments for
the map data. Ultimately, the map passed to expand() can come from anywhere. The
fact that the Gradle build file is executable Groovy code gives you nearly unlimited
flexibility in deciding on its origin.

It’s helpful in this case to take a look at the source file, so we can directly see where the
string substitution is happening.

Filtering and Transforming Files | 5

http://bit.ly/11yxrxt
http://bit.ly/11yxrxt

Here’s the source file before the copy-with-filter operation:

#
Application configuration file
#
hostname: ${databaseHostname}
appVersion: ${version}
locale: en_us
initialConnections: 10
transferThrottle: 5400
queueTimeout: 30000
buildNumber: ${buildNumber}
buildDate: ${date.format("yyyyMMdd'T'HHmmssZ")}

Here’s the destination file after the copy-with-filter operation:

#
Application configuration file
#
hostname: db.company.com
appVersion: 1.6
locale: en_us
initialConnections: 10
transferThrottle: 5400
queueTimeout: 30000
buildNumber: 77
buildDate 20120105T162959-0700

Filtering Line by Line
The expand() method is perfect for general-purpose string substitution—and even
some lightweight elaborations on that pattern—but some file transformations might
need to process every line of a file individually as it is copied. This is where the filter()
method is useful.

The filter() method has two forms: one that takes a closure, and one that takes a class.
We’ll look at both, starting with the simpler closure form.

When you pass a closure to filter(), that closure will be called for every line of the
filtered file. The closure should perform whatever processing is necessary, then return
the filtered value of the line. For example, to convert Markdown text to HTML using
MarkdownJ, see Example 1-9.

Example 1-9. Use filter() with a closure to transform a text file as it is copied
import com.petebevin.markdown.MarkdownProcessor

buildscript {
 repositories {
 mavenRepo url: 'http://scala-tools.org/repo-releases'
 }

6 | Chapter 1: File Operations

http://markdownj.org/

 dependencies {
 classpath 'org.markdownj:markdownj:0.3.0-1.0.2b4'
 }
}

task markdown(type: Copy) {
 def markdownProcessor = new MarkdownProcessor()
 into 'build/poems'
 from 'source'
 include 'todo.md'
 rename { it - '.md' + '.html'}
 filter { line ->
 markdownProcessor.markdown(line)
 }
}

The source file processed by the example code is a short poem with some comments
added. It looks like the following:

A poem by William Carlos Williams
so much depends
upon
He wrote free verse
a red wheel
barrow
In the imageist tradition
glazed with rain
water
And liked chickens
beside the white
chickens

The copied and filtered file has blank lines instead of comments:

so much depends
upon

a red wheel
barrow

glazed with rain
water

beside the white
chickens

Gradle gives you great flexibility in per-file filtering logic, but true to its form, it wants
to give you tools to keep all of that filter logic out of task definitions. Rather than clutter
your build with lots of filter logic, it would be better to migrate that logic into classes of
its own, which can eventually migrate out of the build into individual source files with
their own automated tests. Let’s take the first step in that direction.

Filtering and Transforming Files | 7

Instead of passing a closure to the filter() method, we can pass a class instead. The
class must be an instance of java.io.FilterReader. The Ant API provides a rich set
of pre-written FilterReader implementations, which Gradle users are encouraged to
re-use. The code shown in Example 1-9 could be rewritten as in Example 1-10.

Example 1-10. Use filter() with a custom Ant Filter class to transform a text file as it is
copied
import org.apache.tools.ant.filters.*
import com.petebevin.markdown.MarkdownProcessor

buildscript {
 repositories {
 mavenRepo url: 'http://scala-tools.org/repo-releases'
 }

 dependencies {
 classpath 'org.markdownj:markdownj:0.3.0-1.0.2b4'
 }
}

class MarkdownFilter extends FilterReader {
 MarkdownFilter(Reader input) {
 super(new StringReader(new MarkdownProcessor().markdown(input.text)))
 }
}

task copyPoem(type: Copy) {
 into 'build/poems'
 from 'source'
 include 'todo.md'
 rename { it - ~/\.md$/ + '.html'}
 filter MarkdownFilter
}

Eventually the MarkdownFilter class could move out of the build entirely and into a
custom plug-in. That is an important topic with a chapter of its own.

Filtering File by File
The expand() and filter() methods apply the same transformation function to all of
the files in the copy scope, but some transformation logic might want to consider each
file individually. To handle this case, we have the eachFile() method.

The eachFile() method accepts a closure, which is executed for every file as it is copied.
That closure takes a single parameter, which is an instance of the FileCopyDetails
interface. FileCopyDetails allows you to consider the contents of the copied files one
at time. FileCopyDetails exposes methods that allow you to rename the file, change
its destination path during the copy, exclude it from the copy operation, create duplicate

8 | Chapter 1: File Operations

http://gradle.org/docs/current/javadoc/org/gradle/api/file/FileCopyDetails.html

copies at other paths, and interact with the file programmatically as an instance of
java.io.File. You can do many of the same things through the Gradle DSL as described
previously, but you might prefer in some cases to drop back to direct manipulation. For
example, perhaps you have a custom deployment process that copies a directory full of
files and accumulates a SHA1 hash of all the file contents, emitting the hash into the
destination directory. You might implement that part of the build as in Example 1-11.

Example 1-11. Use eachFile() to accumulate a hash of several files
import java.security.MessageDigest;

task copyAndHash(type: Copy) {
 MessageDigest sha1 = MessageDigest.getInstance("SHA-1");

 into 'build/deploy'
 from 'source'
 eachFile { fileCopyDetails ->
 sha1.digest(fileCopyDetails.file.bytes)
 }
 doLast {
 Formatter hexHash = new Formatter()
 sha1.digest().each { b -> hexHash.format('%02x', b) }
 println hexHash
 }
}

The File Methods
There are several methods for operating on files that are available in all Gradle builds.
These are methods of the Project object, which means you can call them from inside
any configuration block or task action in a build. There are convenience methods for
converting paths into project-relative java.io.File objects, making collections of files,
and recursively turning directory trees into file collections. We’ll explore each one of
them in turn.

file()
The file() method creates a java.io.File object, converting the project-relative path
to an absolute path. The file() method takes a single argument, which can be a string,
a file, a URL, or a closure whose return value is any of those three.

The file() method is useful when a task has a parameter of type File. For example,
the Java plug-in provides a task called jar, which builds a JAR file containing the default
sourceSet’s class files and resources. The task puts the JAR file in a default location
under the build directory, but a certain build might want to override that default. The
Jar task has a property called destinationDir for changing this, which one might
assume works as in Example 1-12.

The File Methods | 9

http://bit.ly/18KECoy
http://bit.ly/12j8lRT
http://bit.ly/171PNFE
http://bit.ly/1aVNU1W

1. This is an implementation detail not specified by the documentation for java.io.File. It is common be‐
havior, but even this much cannot be assumed between environments.

Example 1-12. Trying to set the destinationDir property of a Jar task with a string
jar {
 destinationDir = 'build/jar'
}

However, this build will fail, because destinationDir is of type File, not String. A
pedantic solution might look like Example 1-13.

Example 1-13. Trying to set the destinationDir property of a Jar task with a string
jar {
 destinationDir = new File('build/jar')
}

This build will run, but will not behave predictably in all cases. The File constructor
will create an absolute path out of the supplied parameter, but the constructor argument
will be considered as if it is relative to the directory in which the JVM started up.1 This
directory may change if you are invoking Gradle directly, through the wrapper, through
an IDE, or through integration with a Continuous Integration server. The correct sol‐
ution is to use the file() method, as in Example 1-14.

Example 1-14. Setting the destinationDir property of a Jar task using the file() method
jar {
 destinationDir = file('build/jar')
}

This build results in the destinationDir property being set to the build/jar directory
under the build’s project root. This is the expected behavior, and will work regardless
of how Gradle is being invoked.

If you already have a File object, the file() method will attempt to convert it into a
project-relative path in the same way. The construction new File('build/jar') has
no defined parent directory, so file(new File('build/jar')) will force its parent to
the build’s project root directory. This example shows an awkward construction—real
code would likely omit the inner File construction—but file()’s operation on File
objects works as the example shows. You might use this case if you already had the File
object lying around for some reason.

file() can also operate on java.net.URL and java.net.URI objects whose protocol
or scheme is file://. File URLs are not a common case, but they often show up when
resources are being loaded through the ClassLoader. If you happen to encounter a file

10 | Chapter 1: File Operations

http://bit.ly/12fh2ci
http://bit.ly/12oyAl8
http://bit.ly/12j8ULi

URL in your build, you can easily convert it to a project-relative File object with the
file() method.

files()
The files() method returns a collection of files based on the supplied parameters. It
is like file() in that it attempts to produce project-relative absolute paths in the File
objects it creates, but it differs in that it operates on collections of files. It takes a variety
of different parameter types as inputs, as shown in Table 1-1.

Table 1-1. The parameters accepted by files()
Parameter type Method behavior

String Creates a collection containing a single, project-relative file. Resolves filenames just like
file().

java.io.File Creates a collection containing a single, project-relative file. Resolves File objects just like
file().

java.net.URL or
java.net.URI

Creates a collection of the indicated file. Supports only file:// URLs, just like file().

Collection, Iterable, or
Array

Creates a file collection containing all of the named files. Collection elements are recursively
resolved, so they may contain any of the other datatypes allowed by files().
EXAMPLES:
// A Groovy ArrayList literal

files(['src/main/groovy','src/test/groovy'])

// listFiles() returns an array of File objects

files(file('src/changelog/resources').listFiles())

Task Produces a file collection of the task’s outputs. Output file sets are defined on a per-task
basis. Tasks provided by core plug-ins typically have implicit output file sets.
EXAMPLE (using the Java plug-in):
// Evaluates to the Java compiler's output directory

files(compileJava)

Task Outputs Behaves the same as a task name, but allows the TaskOutputs object to be named
explicitly.
EXAMPLE (using the Java plug-in):
// Evaluates to the Java compiler's output directory

files(compileJava.outputs)

As you can see, files() is an incredibly versatile method for creating a collection of
files. It can take filenames, file objects, file URLs, Gradle tasks, or Java collections con‐
taining any of the same.

Beginning Gradle developers often expect the return type of the method to be a trivial
collection class that implements List. It turns out that files() returns a FileCollec
tion, which is a foundational interface for file programming in Gradle. We will turn
our attention to the section on file collections.

The File Methods | 11

http://bit.ly/16n2gS6
http://docs.oracle.com/javase/6/docs/api/java/io/File.html
http://docs.oracle.com/javase/6/docs/api/java/net/URL.html
http://docs.oracle.com/javase/6/docs/api/java/net/URI.html

fileTree()
The file() method is an effective way to turn paths into files, and the files() method
builds on this to build lists of of files that can be managed as collections. But what about
when you want to traverse a directory tree and collect all the files you find, and work
with those as a collection? This is a job for the fileTree() method.

There are three ways to invoke fileTree(), and each of them borrows heavily from the
configuration of the copy task. They all have several features in common: the method
must be pointed to a root directory to traverse, and may optionally be given patterns to
include or exclude.

The simplest use of fileTree() simply points it at a parent directory, allowing it to
recurse through all subdirectories and add all of the files it finds into the resulting file
collection. For example, if you wanted to create a collection of all of the production
source files in a Java project, the expression fileTree('src/main/java') would get
the job done.

Alternatively, you might want to perform some simple filtering to include some files
and exclude others. Suppose, for example, that you knew that some backup files with
the ~ extension were likely to exist in the source files. Furthermore, you knew some
XML files were mixed in with the source files (rather than placed in the resources
source set where they belong), and you wanted to focus on that XML. You could create
file collections to deal with both of the cases shown in Example 1-15.

Example 1-15. Using fileTree() with includes and excludes
def noBackups = fileTree('src/main/java') {
 exclude '**/*~'
}

def xmlFilesOnly = fileTree('src/main/java') {
 include '**/*.xml'
}

Alternatively, the directory and the include and exclude patterns can be provided in
map form, as shown in Example 1-16. The use of this syntax in place of the closure
configuration syntax is a matter of style.

Example 1-16. Using fileTree() with includes and excludes given in a map literal
def noBackups = fileTree(dir: 'src/main/java', excludes: ['**/*~'])
def xmlFilesOnly = fileTree(dir: 'src/main/java', includes: ['**/*.xml'])

The FileCollection Interface
If you tried running the examples in the the section on the files method and you poked
around at them just a little bit, you may have noticed that the return value of the files()

12 | Chapter 1: File Operations

2. There are actually several subtypes of FileCollection that may be in use in any of these cases. The behavior
of these supertypes may be important in some cases, but we’ll confine our attention to the common supertype
here.

and fileTree() methods don’t have a very friendly default toString() implementation
(Example 1-17). If they were simply ArrayLists as intuition would suggest, we would
expect a dump of their contents. The fact that we don’t see this is a hint to something
useful going on in the Gradle API (Example 1-18).

Example 1-17. The default toString() implementation of a FileCollection
task copyPoems(type: Copy) {
 from 'text-files'
 into 'build/poems'
}

println "NOT HELPFUL:"
println files(copyPoems)

Here’s the output of the previous build, showing default toString() behavior:

$ gradle -b file-collection-not-helpful.gradle
NOT HELPFUL:
file collection

Example 1-18. A more useful way to look at a FileCollection
task copyPoems(type: Copy) {
 from 'text-files'
 into 'build/poems'
}

println "HELPFUL:"
println files(copyPoems).files

Here’s the output of the previous build, showing the contents of the FileCollection:

$ gradle -b file-collection-helpful.gradle
HELPFUL:
[~/oreilly-gradle-book-examples/file-operations-lab/build/poems]

The object returned by the files() method is not a List, but a FileCollection.2 The
FileCollection type shows up in many other places in Gradle: in the contents of
SourceSet objects, in task inputs and outputs, in Java classpaths, in dependency con‐
figurations, and more. Knowing the essential methods of the type goes a long way in
equipping you to program file operations effectively, whether the files are transitive JAR
dependencies fetched from a Maven repository, source files in the build of a Groovy
project, or static resources in a web application. We will explore the key operations
supported by the interface here.

The FileCollection Interface | 13

To illustrate these features, we’ll start with a common build file that sets up some in‐
teresting collections of files (Example 1-19). We’ll add a task at a time to this example
build to see each feature.

Example 1-19. The base build from which we will derive FileCollection examples
apply plugin: 'java'

repositories {
 mavenCentral()
}

dependencies {
 compile 'org.springframework:spring-context:3.1.1.RELEASE'
}

Converting to a Set
We’ve already seen the files property of FileCollection. It returns an object of type
Set<File> containing all of the files or directories in the file collection. To list all of the
source files in the previous project, we might add the task seen in Example 1-20.

Example 1-20. A naive way to list source files
task naiveFileLister {
 doLast {
 println fileTree('src/main/java').files
 }
}

Here’s the result of the naiveFileLister task:

$ gradle nFL
:naiveFileLister
[~/file-collection-lab/src/main/java/org/gradle/example/ConsoleContentSink.java,
~/file-collection-lab/src/main/java/org/gradle/example/Content.java,
~/file-collection-lab/src/main/java/org/gradle/example/ContentFactory.java,
~/file-collection-lab/src/main/java/org/gradle/example/ContentRegistry.java,
~/file-collection-lab/src/main/java/org/gradle/example/ContentSink.java,
~/file-collection-lab/src/main/java/org/gradle/example/
 DefaultContentFactory.java,
~/file-collection-lab/src/main/java/org/gradle/example/DonneContent.java,
~/file-collection-lab/src/main/java/org/gradle/example/PoetryEmitter.java,
~/file-collection-lab/src/main/java/org/gradle/example/ShakespeareContent.java]

BUILD SUCCESSFUL

Converting to a Path String
A build can manipulate collections of files for various purposes, which sometimes in‐
clude using the collection with an operating system command that expects a list of files.

14 | Chapter 1: File Operations

Internally, the core Java plug-in does this with compile-time dependencies when exe‐
cuting the javac compiler (Example 1-21). The Java compiler has a command-line
switch for specifying the classpath, and that switch must be provided with an operating-
specific string. The asPath property converts a FileCollection into this OS-specific
string.

Example 1-21. Printing out all of the compile-time dependencies of the build as a path-
like string
println configurations.compile.asPath

Here’s the results of the build with the previous addition:

$ gradle

~/.gradle/caches/artifacts-8/filestore/org.springframework/spring-context/
3.1.1.RELEASE/jar/ecb0784a0712c1bfbc1c2018eeef6776861300e4/spring-
context-3.1.1.RELEASE.jar:
~/.gradle/caches/artifacts-8/filestore/org.springframework/spring-asm/
3.1.1.RELEASE/jar/8717ad8947fcada5c55da89eb474bf053c30e57/spring-
asm-3.1.1.RELEASE.jar:
~/.gradle/caches/artifacts-8/filestore/commons-logging/commons-logging/
1.1.1/jar/5043bfebc3db072ed80fbd362e7caf00e885d8ae/commons-logging-1.1.1.jar:
~/.gradle/caches/artifacts-8/filestore/org.springframework/spring-core/
3.1.1.RELEASE/jar/419e9233c8d55f64a0c524bb94c3ba87e51e7d95/spring-
core-3.1.1.RELEASE.jar:
~/.gradle/caches/artifacts-8/filestore/org.springframework/spring-beans/
3.1.1.RELEASE/jar/83d0e5adc98714783f0fb7d8a5e97ef4cf08da49/spring-
beans-3.1.1.RELEASE.jar:
~/.gradle/caches/artifacts-8/filestore/aopalliance/aopalliance/1.0/jar/
235ba8b489512805ac13a8f9ea77a1ca5ebe3e8/aopalliance-1.0.jar:
~/.gradle/caches/artifacts-8/filestore/org.springframework/spring-aop/
3.1.1.RELEASE/jar/3c86058cdaea30df35e4b951a615e09eb07da589/spring-
aop-3.1.1.RELEASE.jar:
~/.gradle/caches/artifacts-8/filestore/org.springframework/spring-expression/
3.1.1.RELEASE/jar/1486d7787ec4ff8da8cbf8752d30e4c808412b3f/spring-
expression-3.1.1.RELEASE.jar

Module Dependencies as FileCollections
The most convenient way to illustrate converting a FileCollection to a path-like string
is to use a collection of module dependencies, as shown in converting to a path string.
It’s worth pointing out explicitly that dependency configurations are themselves File
Collections. When dependencies are listed in the dependencies { } section of the

The FileCollection Interface | 15

3. The most commonly used dependency configurations are compile and runtime, which are defined by the
Java plug-in, and not explicitly inside a configurations block. For a full treatment of configurations and
dependencies, see Chapter 4.

4. You may prefer this scheme over repositories like Maven Central on principal. Gradle does not force you to
use one mechanism of the other.

build, they are always assigned to a named configuration. Configurations are themselves
defined in the configurations { } section of the build.3

As a teacher and frequent conference presenter on Gradle, sometimes I want to enable
students to build Java code at times when there is no reliable internet connection. (Many
US hotels and conference centers are still woefully unprepared for a few hundred soft‐
ware developers, each with two or three devices on the wireless network and a seemingly
insatiable appetite for bandwidth.) While I strongly prefer dependencies to be managed
by my build tool, it might make sense for me to prepare lab materials with all of the
dependencies statically located in the project in the style of old Ant builds.4 For some
Java frameworks and APIs, chasing all of these JARs down by hand can be a burden. By
using module dependencies as file collections, we can automate this work.

If we add the following trivial copy task to Example 1-19, we’ll find the lib directory
quickly populated with all of the JARs we need after we run the task. Adding new de‐
pendencies to the project later will require only that we re-run the task, and the new
JARs will appear as expected. Note that the from method of the Copy task configuration
block, which took a directory name as a string in previous examples, can also take a
FileCollection as shown in Example 1-22.

Example 1-22. Using module dependencies as a FileCollection to capture JAR files.
task copyDependencies(type: Copy) {
 from configurations.compile
 into 'lib'
}

Adding and Subtracting FileCollections
FileCollections can also be added and subtracted using the + and - operators. We can
derive a set of examples by using dependency configurations as file collections.

Our example build for this section is a command-line application using the Spring
framework. Spring brings with it a half dozen or so JARs in the minimal case, which
would be fairly painful to provide on the command line every time we wanted to run
the application. The JavaExec task provides us with a convenient way to solve the
problem, as long as we can tell it the class to run and the classpath it should use when
launching the new Java Virtual Machine (Example 1-23).

16 | Chapter 1: File Operations

http://bit.ly/184LhHv

5. Compile-time dependencies are, by definition, run-time dependencies as well.

The classpath we want has two components: all of the compile-time dependencies of
the project5 plus the classes compiled from the main Java sources of the project. The
former are available in the configurations.compile collection, and the latter in sour
ceSets.main.output. We will explore sourceSet collections more in the next section.

Example 1-23. Using FileCollection addition to create a runtime classpath
task run(type: JavaExec) {
 main = 'org.gradle.example.PoetryEmitter'
 classpath = configurations.compile + sourceSets.main.output
}

Subtracting one file collection from another creates a new collection containing all of
the files in the left-hand collection that are not also in the right-hand collection. To
create a collection of all of the text resources in our example build that are not Shelley
poetry, we might add the code in Example 1-24 to our build.

Example 1-24. Creating an intersection of two FileCollections
def poems = fileTree(dir: 'src/main/resources', include: '*.txt')
def romantics = fileTree(dir: 'src/main/resources', include: 'shelley*')
def goodPoems = poems - romantics

Printing out the files property of goodPoems (or otherwise inspecting the contents of
the collection) shows that it contains all of the .txt files in the src/main/resources
directory, but not the file whose name starts with shelley. In a practical build, this case
might be accomplished with an excludes property, but more subtle intersections of
FileCollections are also possible, such as subtracting container-provided JARs from
the set of dependencies packaged up by a WAR task when building a Java web
application.

SourceSets as FileCollections
In earlier examples, we used the fileTree() method to create a file collection of all of
the source files in a project. It turns out that Gradle gives us a much cleaner way to get
this same job done, using the same interface as we’ve been using all along. Source
Sets are the domain objects Gradle uses to represent collections of source files, and they
happen to expose source code inputs and compiled outputs as FileCollections.

The allSource property of a SourceSet object returns a file collection containing all
source inputs and, in the case of source sets compiled by the Java plug-in, all resource
files as well. In our example build, inspecting the property would yield the results in
Example 1-25.

The FileCollection Interface | 17

http://gradle.org/docs/current/dsl/org.gradle.api.tasks.SourceSet.html
http://gradle.org/docs/current/dsl/org.gradle.api.tasks.SourceSet.html

Example 1-25. Printing out the collection of source files in the main Java SourceSet
println sourceSets.main.allSource.files

[~/file-collection-lab/src/main/resources/application-context.xml,
~/file-collection-lab/src/main/resources/chesterton.txt,
~/file-collection-lab/src/main/resources/henley.txt,
~/file-collection-lab/src/main/resources/shakespeare.txt,
~/file-collection-lab/src/main/resources/shelley.txt,
~/file-collection-lab/src/main/java/org/gradle/example/ConsoleContentSink.java,
~/file-collection-lab/src/main/java/org/gradle/example/Content.java,
~/file-collection-lab/src/main/java/org/gradle/example/ContentFactory.java,
~/file-collection-lab/src/main/java/org/gradle/example/ContentRegistry.java,
~/file-collection-lab/src/main/java/org/gradle/example/ContentSink.java,
~/file-collection-lab/src/main/java/org/gradle/example/
 DefaultContentFactory.java,
~/file-collection-lab/src/main/java/org/gradle/example/DonneContent.java,
~/file-collection-lab/src/main/java/org/gradle/example/PoetryEmitter.java,
~/file-collection-lab/src/main/java/org/gradle/example/ShakespeareContent.java]

Likewise, the build outputs are provided in the outputs property. The outputs are not
given as an exhaustive list of all of the files generated by the compiler—this would require
that we run the compiler before interpreting the source set—but instead as a list of the
directories into which compiled outputs will be placed (Example 1-26).

Example 1-26. Printing out the output directories the Java compiler will use for the
main source set.
println sourceSets.main.output.files

[~/file-collection-lab/build/classes/main,
~/file-collection-lab/build/resources/main]

Lazy Files
When programming with file collections, it might be tempting to think of them as static
lists. For example, a call to fileTree() might scan the filesystem at the time it is called,
producing an immutable list that the build can then manipulate. Immutable data struc‐
tures have their uses, but in the Gradle lifecycle, this would make file collections difficult
to use. As a result, instances of the FileCollection interface are lazily evaluated when‐
ever it is meaningful to do so.

For example, a task could use the fileTree() method to create a collection of all of the
files in the build/main/classes directory that match the glob pattern **/

*Test.class. If that file collection is created during the configuration phase (which is

18 | Chapter 1: File Operations

6. Gradle builds have three phases: initialization, configuration, and execution. Configuration-time build code
sets up the task graph for Gradle to process. Actual build activity like copying, compiling, and archiving takes
place during the execution phase.

likely),6 the files it is attempting to find may not exist until deep into the execution phase.
Hence, file collections are designed to be static descriptions of the collection semantics,
and the actual contents of the collection are not materialized until they are needed at a
particular time in the build execution.

Conclusion
In this chapter, we’ve looked at Gradle’s comprehensive support for file operations. We
explored copy tasks, seeing their ability to move files around in trivial and non-trivial
ways, performing various kinds of pattern-matching on files, and even filtering file
contents during copy. We looked at keyword expansion and line-by-line filtering of file
contents during copy, and also at renaming files as they’re copied—something that often
comes in handy when modifying the contents of copied files. We reviewed the three
important methods Gradle developers use to deal with files, and finally learned about
the all-important FileCollection interface that describes so many important Gradle
domain objects. Gradle doesn’t leave you with the bare semantics of the Java File object,
but gives you a rich set of APIs to do the kinds of file programming you’re likely to do
as you create custom builds and automation pipelines in your next-generation builds.

Conclusion | 19

1. With apologies to Kurt Vonnegut.

CHAPTER 2

Custom Plug-Ins

Plug-In Philosophy
With its standard domain-specific language (DSL) and core plug-ins, Gradle intends to
be a powerful build tool without the addition of any extensions or add-ons. Most com‐
mon build tasks can be accomplished with these tools as configured by simple build
files. Common builds are easy to write; however, common builds are not so common.1

Projects that begin as simple collections of source files and a few static resources bundled
into a standard archive format often evolve into complex multi-project hierarchies with
requirements to perform database migration, execute repetitive transformations of
static resources, perform and validate automated deployments, and accomplish still
more build automation that doesn’t always easily conform to an existing standard or set
of parameters.

Developing such a build is a specialized form of software development. The software in
question is not the code that automates the business domain of the project itself, but
code that automates the build domain of the project. This specialized code is software
nevertheless, and it is precisely this kind of development that Gradle aims to facilitate.

To write this kind of code, an untutored Gradle developer might simply write a large
amount of imperative Groovy code inside doLast() clauses of a build file. However, this
code would be untestable, and would lead to large and unreadable build files of the kind
other build tools are often criticized for creating. This practice is strongly discouraged.
In its place, we offer the plug-in API.

21

The Plug-In API
A Gradle plug-in is a distributable archive that extends the core functionality of Gradle.
Plug-ins extend Gradle in three ways. First, a plug-in can program the underlying
Project object just as if an additional build file were mixed into the current build file.
Tasks, SourceSets, dependencies, repositories, and more can be added or modified by
applying a plug-in.

Second, a plug-in can bring new modules into the build to perform specialized work.
A plug-in that creates WSDL files from an annotated Java web service implementation
should not include its own code for scanning for annotations and generating content
in a specialized XML vocabulary, but should instead declare a dependency on an existing
library to do that work, and provide a mechanism for that library to be fetched from an
online repository if it is not already present on the build system.

Finally, plug-ins can introduce new keywords and domain objects into the Gradle build
language itself. There is nothing in the standard DSL to describe the servers to which a
deployment might be targeted, the database schemas associated with the application, or
the operations exposed by an underlying source control tool. Indeed, the standard DSL
can’t possibly envision every scenario and domain that build developers may encounter.
Instead, Gradle opts to provide a well-documented API that allows you, the build de‐
veloper, to extend Gradle’s standard build language in ways that are entirely customized
to your context. This is a core strength of Gradle as a build tool. It allows you to write
concise, declarative builds in an idiomatic language backed by rich, domain-specific
functionality. This is accomplished through plug-ins.

The Example Plug-In
In this chapter, we will create a Gradle plug-in to automate the use of the open-source
database refactoring tool, Liquibase. Liquibase is a command-line tool written in Java
whose purpose is to manage change in a relational database schema. It can reverse-
engineer an existing database schema into its XML change log, and track the version of
that change log against running instances of the database scheme to determine whether
any new database refactorings must be applied. For users who prefer a Groovy syntax
over XML, an open-source Groovy Liquibase DSL is available.

You can learn more about Liquibase online at the Liquibase Quick Start.

Liquibase is very good at what it does, but it is cumbersome to execute from the com‐
mand line without a wrapper script of some kind. Moreover, since a high level of build
and deployment automation is always an implicit goal, we would prefer to be able to
wire Liquibase operations into our build lifecycle.

22 | Chapter 2: Custom Plug-Ins

http://bit.ly/150gDg3
http://liquibase.org/
https://github.com/tlberglund/groovy-liquibase
http://liquibase.org/quickstart

Our goals in this chapter will be to do the following:

• Create Gradle tasks corresponding to the generateChangeLog, changeLogSync, and
update commands inside a Gradle build file.

• Make the Groovy DSL available to replace the default XML Changelog format.
• Refactor the Gradle tasks into a custom task type.
• Introduce Gradle DSL extensions to describe Changelogs and database

configurations.
• Package the plug-in as a distributable JAR file.

The Liquibase plug-in will begin its life as a standard Gradle build file. This is an easy
way to begin sketching out and prototyping code whose final form you do not yet know,
which is a typical workflow in the development of new forms of build automation. As
the plug-in takes shape, we will slowly refactor it into a distributable plug-in project
with a lifecycle of its own. Evolving plug-in development in this manner is a perfectly
appropriate, low-ceremony path to learning the API and discovering the requirements
of your build extension.

Setup
To run the example code in this chapter, you’ll need a database for Liquibase to connect
to. The book’s example code has a build file that sets up the H2 database for this purpose.
Using Git, clone the http://github.com/gradleware/oreilly-gradle-book-examples repos‐
itory, then change to the plugins/database-setup directory. Run the following two
tasks:

$ gradle -b database.gradle createDatabaseScript
$ gradle -b database.gradle buildSchema

The first command will provide a platform-specific script called starth2 that will run
the H2 embedded database administrative console for you to inspect the schema at any
time during plug-in development. The second command will create a sample database
schema in desperate need of refactoring—just the kind of test environment we’ll need
for our plug-in development.

You will have to move the database.gradle build file to the directo‐
ry in which you are doing plug-in development, and execute the build
Schema task from there to ensure that the H2 database is in the right
location for your plug-in to find it. Alternatively, you can place the
database in a directory outside of your development directory and edit
the JDBC URL to point to the correct path, but this step is left as an
exercise for the reader.

Setup | 23

http://bit.ly/13UpTVW
http://bit.ly/1buVHCE
http://github.com/gradleware/oreilly-gradle-book-examples

Sketching Out Your Plug-In
Our Liquibase plug-in begins with the need to create tasks to perform Changlelog re‐
verse engineering, Changelog synchronization, and updating of the Changelog against
the database. Some digging into the Liquibase API shows that the best way to run these
three commands is to call the liquibase.integration.commandline.Main.main()
method. This method expects an array of command-line arguments indicating the da‐
tabase to connect to and which Liquibase sub-command to run. For each of its tasks
that perform some Liquibase action, our plug-in will end up constructing this array and
calling this method.

It’s worth thinking about precisely what those tasks might be. Given that we plan to
support three Liquibase commands—generateChangeLog, changeLogSync, and
update—we can plan on creating three tasks by those same names. In a different sce‐
nario, you might decide to “namespace” the task names by prefixing them with lb or
liquibase to keep them from colliding with tasks from other plug-ins, but for our
purposes here we can keep the task names short and simple.

We also know we’re going to introduce some custom DSL syntax to describe databases
and ChangeLogs, but let’s keep that as a footnote for now. We’ll revisit the idea and
decide what that syntax should look like as soon as we’re ready to implement it.

Custom Liquibase Tasks
Our plug-in will eventually introduce some fully-implemented tasks that call Liquibase
with little or no declarative configuration. Before it can do that, though, we will need
to build a custom task type. The purpose of this task is to convert task parameters into
the required argument list for the Liquibase command line entry point and call the
main() method. The implementation is shown in Example 2-1.

Example 2-1. The Liquibase task type prototype
import org.gradle.api.DefaultTask
import org.gradle.api.tasks.TaskAction
import liquibase.integration.commandline.Main

class LiquibaseTask extends DefaultTask {
 String command
 String url, password, username
 File changeLog

 @TaskAction
 def liquibaseAction() {
 def args = [
 "--url=${url}",
 "--password=${password}",
 "--username=${username}",
 "--changeLogFile=${changeLog.absolutePath}",

24 | Chapter 2: Custom Plug-Ins

 command
]

 Main.main(args as String[])
 }
}

Remember, a custom task type is simply a class that implements the
org.gradle.api.Task interface, or more commonly extends the org.gradle.api.De
faultTask base class. The LiquibaseTask provides a basic interface between the rest
of the build and the core action of executing the Liquibase command-line driver through
which all Liquibase operations are normally accessed. The properties of the Liquibase
Task will become task configuration parameters when the plug-in tasks are used in an
actual build later on.

Having defined the custom task, we need only to create an actual task having that type,
and to configure it. Note in Example 2-2 that we can use Gradle’s configuration syntax
to set instance variables in the task class. We assign values to the url, username, pass
word, changeLog, and command properties through a very standard assignment syntax.

Example 2-2. Instantiating the custom Liquibase task
task generateChangeLog(type: LiquibaseTask) {
 url = 'jdbc:h2:db/gradle_plugins'
 username = 'secret'
 password = 'sa'
 changeLog = file('changelog.xml')
 command = 'generateChangeLog'
}

Applying Yourself
Now that we’ve got a custom task type that makes it possible to run Liquibase from
Gradle, let’s take a step back and begin building the plug-in proper. The simplest Gradle
plug-in is a class that implements the org.gradle.api.Plugin<Project> interface.
That interface defines a single method: void apply(Project project). We could begin
with a method like what we see in Example 2-3.

The Plugin interface is type-parameterized because plug-ins can the‐
oretically be applied to any kind of Gradle object. Applying them to
Project is by far the most common use case, and is the only one we’ll
look at here.

Sketching Out Your Plug-In | 25

2. In Liquibase, generateChangeLog reverse engineers a database schema, changeLogSync places a new da‐
tabase under Liquibase’s control, and update pushes new changes into a database.

Example 2-3. The apply() method of the first version of the Liquibase plug-in
class LiquibasePlugin implements Plugin<Project> {
 void apply(Project project) {
 project.task('generateChangeLog', type: LiquibaseTask) {
 group = 'Liquibase'
 command = 'generateChangeLog'
 }
 project.task('changeLogSync', type: LiquibaseTask) {
 group = 'Liquibase'
 command = 'changeLogSync'
 }
 project.task('update', type: LiquibaseTask) {
 group = 'Liquibase'
 command = 'update'
 }
 }
}

As a reminder, when you are first sketching out a plug-in as we are doing, you can code
this class and the associated LiquibaseTask class directly in your build.gradle file. At
this point in development, you are trying to learn the plug-in API and the scope and
design of your plug-in itself. Deployment and packaging will eventually be very im‐
portant concerns, but we can happily ignore them for now.

This example creates three new build tasks: generateChangeLog, changeLogSync, and
update.2 Since the Liquibase plug-in is written in Groovy, we’re able to use a very Gradle-
like syntax to declare new tasks; indeed, the code shown here would work verbatim
inside a build file, apart from any plug-in definition. Build masters don’t have to write
plug-ins in Groovy, but it’s a rewarding choice due to its similarity to the Gradle build
file syntax and its productivity advantages over Java as a language.

Extensions
At this point our plug-in is starting to be able to do some work, but its configuration is
rather pedantic (Example 2-4). We must configure each and every task with the database
username, password, URL, and the changelog file.

Example 2-4. The Liquibase-enabled build so far
generateChangeLog {
 url = 'jdbc:h2:db/gradle_plugin'
 password = 'secret'
 username = 'sa'
 changeLog = file('changelog.xml')
}

26 | Chapter 2: Custom Plug-Ins

changeLogSync {
 url = 'jdbc:h2:db/gradle_plugin'
 password = 'secret'
 username = 'sa'
 changeLog = file('changelog.xml')
}

update {
 url = 'jdbc:h2:db/gradle_plugin'
 password = 'secret'
 username = 'sa'
 changeLog = file('changelog.xml')
}

Clearly, we shouldn’t settle for this. The real power of Gradle plug-ins comes not just
from the ability to hide a bunch of imperative code behind a plug-in declaration—
custom Ant tasks and Maven plug-ins had already accomplished this a decade before
Gradle had its 1.0 release—but rather from the ability to extend the domain model of
the build. The Extension API is the primary means of doing so.

Design of plug-in extensions should begin with a sketch of what the desired build file
syntax will look like. To design our build file syntax, we must first imagine what sorts
of things our build will interact with in its now-expanding domain. In this case, this is
simple: the build needs to know about databases and changelogs.

A database is a particular instance of a JDBC-connected database. A build automated
with Liquibase database migrations will have separate domain objects representing the
local database sandbox, a database instance on a staging server used for ad-hoc testing,
a production database instance, and so on.

A Liquibase changelog is a file containing an ordered list of all of the refactorings per‐
formed on the database, expressed in an XML format. You can read more about Liqui‐
base changelogs on the Liquibase site. Example 2-5 will have a single changelog, but
real-world builds using Liquibase may break up their database refactorings into two,
three, four, or more separate files. Our domain model must support any number of
changelog files.

Example 2-5. The goal of our plug-in’s new DSL.
liquibase {
 changelogs {
 main {
 file = file('changelog.groovy')
 }
 }

 databases {
 sandbox {
 url = 'jdbc:h2:db/liquibase_workshop;FILE_LOCK=NO'

Sketching Out Your Plug-In | 27

http://www.liquibase.org/documentation/databasechangelog
http://www.liquibase.org/documentation/databasechangelog

 username = 'sa'
 password = ''
 }
 staging {
 url = 'jdbc:mysql://staging.server/app_db'
 username = 'dev_account'
 password = 'ab87d24bdc7452e557'
 }
 }

 defaultDatabase = databases.sandbox
}

Note what we have done here: we have proposed new Gradle build syntax for describing
new domain objects not originally envisioned by the designers of Gradle. All of this new
syntax is contained within a fixed namespace (liquibase), but otherwise we have sig‐
nificant control over what it looks like and how it represents our domain. This decep‐
tively simple observation is at the heart of the value of Gradle as a platform for creating
customized builds. Gradle allows us not just to add custom code to our builds, but to
add custom language as well. This is a key enabling feature for managing build
complexity.

Plug-in extensions can hide complexity from build users by exposing a simple, idiomatic
DSL in the build—and it isn’t even difficult to implement them. An extension takes the
form of a class, usually written in Java or Groovy, that exposes the properties and meth‐
ods accessed in the extension block. Our example, written in Groovy, is shown in
Example 2-6.

Example 2-6. The Liquibase plug-in extension class
import org.gradle.api.NamedDomainObjectContainer

class LiquibaseExtension {
 final NamedDomainObjectContainer<Database> databases
 final NamedDomainObjectContainer<ChangeLog> changelogs
 Database defaultDatabase
 String context

 LiquibaseExtension(databases, changelogs) {
 this.databases = databases
 this.changelogs = changelogs
 }

 def databases(Closure closure) {
 databases.configure(closure)
 }

 def changelogs(Closure closure) {
 changelogs.configure(closure)

28 | Chapter 2: Custom Plug-Ins

3. In Java and Groovy, final fields can be initialized when the object is constructed, but can’t be changed
thereafter. These two final fields are object collections, and the objects in the collections can be changed at
runtime, but the collection instances themselves are fixed once the object is constructed.

4. POJO stands for Plain Old Java Object. It refers to a Java object whose type consists only of properties,
methods, and an ordinary constructor, with no external requirement on a runtime container to create in‐
stances of it.

 }
}

The extension class defines two methods and two non-final properties.3 The two Name
dDomainObjectContainer instances, databases and changelogs, will hold collections
of domain objects created in the build syntax shown in Example 2-5. NamedDomainOb
jectContainer is a generic collection, and each instance holds domain objects of a
different type. The Database and ChangeLog classes will have to be defined as shown in
Example 2-7. The only feature that sets them apart from regular POJOs4 (or POGOs)
is that they must have a property called name and a constructor that accepts a String
and initializes the name property with it. Otherwise they do not extend any base class
or implement any interface in the Gradle API.

The Liquibase-enabled Gradle build is able to maintain collections of databases and
changelogs because of these two classes, and the way they are included in the extension
class through the NamedDomainObjectContainer collection.

Example 2-7. The Database and ChangeLog classes
class ChangeLog
{
 def name
 def file
 def description

 ChangeLog(String name) {
 this.name = name
 }
}

class Database
{
 def name
 def url
 def username
 def password

 Database(String name) {
 this.name = name
 }
}

Sketching Out Your Plug-In | 29

To apply this extension to the projects that use our plug-in, we will have to modify our
LiquibasePlugin.apply() method. The enhanced apply() method can be seen in
Example 2-8. The new functionality is in at the end, where the extensions.create()
method is called. This method call indicates that the extension context will be named
liquibase, and passes in the instances of the NamedDomainObjectContainers that will
be held by the extension object.

Example 2-8. The apply() method with the plug-in extension included
class LiquibasePlugin implements Plugin<Project> {
 void apply(Project project) {
 // Create and install custom tasks
 project.task('generateChangeLog', type: LiquibaseTask) {
 group = 'Liquibase'
 command = 'generateChangeLog'
 }
 project.task('changeLogSync', type: LiquibaseTask) {
 group = 'Liquibase'
 command = 'changeLogSync'
 }
 project.task('update', type: LiquibaseTask) {
 group = 'Liquibase'
 command = 'update'
 }

 // Create the NamedDomainObjectContainers
 def databases = project.container(Database)
 def changelogs = project.container(ChangeLog)

 // Create and install the extension object
 project.configure(project) {
 extensions.create("liquibase",
 LiquibaseExtension,
 databases,
 changelogs)
 }
 }
}

With all of that in hand, let’s take a look at the parts of the extension class itself, starting
with the easiest part: the defaultDatabase property. This is an instance of the Data
base class that can simply be assigned as a normal property inside the liquibase
extension block. In the DSL example we sketched out, you can see this in the default
Database = databases.sandbox line. This indicates to the LiquibaseTasks that they
should use the Database instance called sandbox if no other database configuration is
provided.

The extension class has two methods: databases and changelogs, which accept a single
parameter of type Closure. Passing this closure to the configure() method of the

30 | Chapter 2: Custom Plug-Ins

domain object collection class will do two things: first, it will create a new instance of
the domain object managed by the collection (either Database or ChangeLog). Second,
it will set fields on that domain object using the property names referenced in the
configuration block in the build file itself. Let’s refer again to just this piece of the pro‐
posed build DSL as shown in Example 2-9.

Example 2-9. The creation and configuration of a Database domain object
liquibase {
 databases {
 sandbox {
 url = 'jdbc:h2:db/liquibase_workshop;FILE_LOCK=NO'
 username = 'sa'
 password = 'secret'
 }
 }
}

The inner sandbox block causes the new Database domain name object to be named
“sandbox.” (Remember, this is a named domain object container, so all of the objects we
create in it must have names.) The property assignments inside the curly braces of the
sandbox block are converted into property assignments on the new instance of our
Database class.

The outer set of curly braces wrapping the sandbox block form the Groovy closure that
is passed to the databases() method of the extension class. If you wanted to define
additional databases for the build to access—perhaps a staging server or a production
instance—those would be placed as peers to the sandbox definition.

The complete source code of the sketched-out plug-in is available in a GitHub Gist.
Remember, all of this code was typed directly into a plain Gradle build file, with no
compilation or build steps required. This is a very efficient way to create a prototype,
but of course a properly managed plug-in will need a build of its own, so it can be
decorated with all of the appropriate testing, versioning, and release processes that at‐
tend mature software development. We’ll look at this next.

Packaging a Plug-In
Converting our quick-and-dirty plug-in implementation to an independent project
with a build all its own is not difficult. The process consists mainly of breaking up the
classes developed in the previous section into files of their own, adding a little bit of
metadata to the JAR file, and fixing up our classpath with the Gradle API. We’ll look at
these things one at a time.

The plug-in we built has seven separate classes packaged in the com.august
techgroup.gradle.liquibase and com.augusttechgroup.gradle.liquibase.tasks

Packaging a Plug-In | 31

https://gist.github.com/3132622

5. This line can be seen in the completed code.

packages. Since these are Groovy classes, we’ll place them under the src/main/groo
vy directory of the build. You can browse the source of this chapter’s version of the plug-
in on GitHub.

After locating the classes there, we’ll need to provide one additional file in the build to
give the plug-in its ID in builds in which it is applied. In the previously sketched-out
plug-in, we applied the plug-in directly by its classname with the line apply plugin:
LiquibasePlugin at the top of the build.5 A properly packaged Liquibase plug-in should
be applied just like the core plug-ins are, with the line apply plugin: 'liquibase'.
This plug-in ID is provided through a metadata file.

We will add a file called liquibase.properties in the src/resources/META-INF/
gradle-plugins directory of the project. This directory will automatically be included
in the jar file under its META-INF directory. The purpose of the file is to translate from
the string ID of the plug-in to the fully qualified name of the class that implements the
plug-in. The file’s brief contents are shown in Example 2-10.

Example 2-10. The contents of the liquibase.properties meta file
implementation-class=com.augusttechgroup.gradle.liquibase.LiquibasePlugin

Finally, the plug-in code must have a build. Naturally, we will use Gradle for this task.
The full build shown in the example project contains many extra features for packaging
and deployment to the Central Repository, but it can be much simpler. The main prob‐
lem is solving the compile-time classpath dependency on the Gradle APIs themselves.
(The plug-in also depends on Liquibase modules, but we already know how to bring in
regular Maven-style dependencies from reading Buiding and Testing With Gradle.)

The answer to the Gradle API question is the gradleApi() convenience method. De‐
clared as a compile-time dependency, it brings in all of the internal Gradle classes needed
to build a project that extends Gradle itself. The completed minimum subset build is
shown in Example 2-11.

Example 2-11. A simplified plug-in build file
apply plugin: 'groovy'

repositories {
 mavenCentral()
}

dependencies {
 groovy 'org.codehaus.groovy:groovy:1.8.6'
 compile gradleApi()

32 | Chapter 2: Custom Plug-Ins

https://gist.github.com/3132622
http://bit.ly/13yWKRn
http://bit.ly/14Gi1Fs

 compile 'org.liquibase:liquibase-core:2.0.3'
}

Conclusion
The Liquibase plug-in is a good example of a real-world product that introduces an
external API to power new execution-time features and extends the build domain model
in ways unique to its own domain. Hundreds of lines of build code are completely hidden
inside the plug-in, and advanced functionality is introduced to the build tool as a native
part of its vocabulary. And that vocabulary itself is expanded to encompass a new do‐
main that isn’t a part of the core build tool itself.

When built and packaged as a project of its own, the plug-in takes on life as a software
project. We can introduce automated tests, or ideally even bake them in while we code
as an integrated part of the development process. We can deploy a continuous integra‐
tion server. We can apply appropriate versioning, source repository tagging, and other
release management protocols. In short, this extension to the build tool brings new
functionality to bear on the system, is expressed in new build language, and is engineered
within the context of contemporary software development practice. This is the essence
of the Gradle plug-in story, which is a very powerful story indeed.

Conclusion | 33

CHAPTER 3

Build Hooks

By itself, Gradle is a deeply customizable toolkit for creating custom build software. It
comes with out-of-the-box conventions that are useful for highly standardized builds,
and it exposes a rich set of APIs for introducing novel functionality into a non-
commodity build as we saw in Chapter 2. But your ability to customize a Gradle build
doesn’t end with plug-ins.

Gradle offers you the ability to modify the execution of that program by hooking a
variety of events that occur during the configuration and execution of your build. These
hooks are simply blocks of Groovy code that run when tasks are added, when projects
are created, and at other times during Gradle’s internal configuration sequence. Also,
following the patterns implicit in Groovy’s own metaprogramming APIs, Gradle gives
you the ability to create tasks dynamically based on its powerful rules feature. This
chapter presents hooks and rules as a means of managing build complexity and deco‐
rating the functionality of builds whose source we do not always directly control.

The Gradle Lifecycle: A Review
Many readers of this book will be familiar with the Gradle build lifecycle, but a thorough
understanding of build hooks requires that we revisit it briefly. Every Gradle build pro‐
ceeds through three lifecycle phases in precisely the same order. These phases are ini‐
tialization, configuration, and execution.

During the initialization phase, Gradle starts up and locates the build files it must pro‐
cess. Crucial during this phase is the determination of whether the build is single-project
or multi-project. If it is a single project build, Gradle identifies a single build file to pass
to the next phase. If it is a multi-project build, Gradle locates potentially many build
files for processing in the next phase.

That next phase is configuration. During configuration, Gradle executes each build file
as a Groovy script. The effect of configuration is not the actual execution of build

35

JohnHunter
高亮

JohnHunter
高亮

1. If it is a multi-project build, there is also a DAG of project objects, one for each project.

2. Dependency order means that if task A depends on task B, task B will run first.

actions—that comes next—but rather the creation of a directed acyclic graph (DAG) of
task objects.1 It is during the construction of this graph that many of the hook methods
run.

The final phase is execution. During this phase, Gradle identifies the tasks in the task
DAG that must be executed, and executes them in dependency order.2 All build activities
(e.g., compiling code, copying files, uploading artifacts, etc.) occur during execution.
Some build hooks are evaluated during execution.

Advising the Build Graph
In the early 2000s, the paradigm of aspect-oriented programming (AOP) became a
marginally popular way to manage the complexity of enterprise Java software. AOP
acknowledged that programs often contained individual units of functionality—in the
case of an object-oriented language like Java, these are methods—which need to be
enhanced with code whose purpose is not directly related to the unit in question. For
example, a method that processes a web request might need to make security assertions
before it runs, or it might have to emit logging after it runs. A method that writes to the
database might have to have a database context set up first and a transaction committed
after.

AOP developed its own vocabulary and a small number of Java frameworks to imple‐
ment it. Gradle build hooks are similar enough to AOP that some of this vocabulary is
worth retaining. The code that ran before and after the original method was called
advice. The advice code was often described as being orthogonal to the original code,
meaning that the purposes of the two blocks of code weren’t correlated in any direct
way, even though the execution sequence was. The kinds of code with which one would
advise application methods were called cross-cutting concerns. The most common tu‐
torial examples were logging and database transaction management.

In our discussion of Gradle build hooks, we’ll retain the “advice” terminology, and gen‐
erally focus our examples on the sorts of orthogonal, cross-cutting concerns that have
populated AOP texts for the past decade.

Advising Project Evaluation
The goal of an individual Gradle build file is to set up a Project with all of the settings
and tasks it needs to give Gradle useful work to do during the build. The setup takes
place during the configuration phase, and the build itself takes place during the execu‐
tion phase. The project.beforeEvaluate() and project.afterEvaluate() methods

36 | Chapter 3: Build Hooks

JohnHunter
高亮

3. By the time the hook itself is evaluated, it’s too late; evaluation has already taken place.

are hooks to execute blocks of code before and after configuration is run on a particular
project.

Example 3-1 is a trivial build that hooks the afterEvaluate event. After the build has
finished evaluating, the hook checks for the presence of a grammars directory. If the
directory exists, the hook creates a task called testGrammars, ostensibly to perform
grammar tests on the contents of the directory. Try running the build with and without
a grammars directory present. Note the output of gradle tasks in each case.

Example 3-1. Hooking project after-evaluation
afterEvaluate {
 if (file('grammars').isDirectory()) {
 println "'grammars' directory found"

 task testGrammars << {
 println "Running grammar tests"
 }
 } else {
 println "'grammars' directory not found"
 }
}

task helloWorld {
 doLast {
 println "hello, world"
 }
}

The beforeEvaluate() hook is not particularly useful in this case, since there is no way
in a single build file to advise the build to do something before it is evaluated.3 Before-
hooks are only useful in the case of a multiproject build. Example 3-2 has three builds,
the parent project and two subprojects. The grammar check is only performed on the
subprojects—now as a before-hook—by way of the allprojects method. The config‐
uration inside the allprojects closure is applied to all projects, and therefore has a
chance to affect the subprojects, since they have not yet been evaluated at the time the
closure is run. If you run the example with and without the grammar directory in all
three project directories, you’ll find that the parent project never gains the testGram
mars task, since the beforeEvaluate hook can’t run on the project in which it is read.

Example 3-2. Hooking project before-evaluation
allprojects {
 beforeEvaluate {
 if(project.file('grammars').isDirectory()) {
 println "'grammars' found in ${project.name}"

Advising Project Evaluation | 37

 task testGrammars << {
 println "Running grammar tests in ${project.name}"
 }
 } else {
 println "'grammars' not found in ${project.name}"
 }
 }
}

task helloWorld {
 doLast {
 println "the parent says hello"
 }
}

Note that the check for the file has become project.file() instead of merely file()
as in the previous example. This causes Gradle to look explicitly in the individual sub‐
project’s directory for the grammars directory, rather than only at the root project level.

Global Project Loading and Evaluation Hooks
The preceding examples show beforeEvaluate() and afterEvaluate() being used
globally, to apply to all projects at once using the allprojects closure. The methods
can also be applied to individual project objects just as easily, if a particular subproject
needs before-evaluate or after-evaluate processing applied more surgically. However,
you might find that you often have a block of processing to apply in a global sense after
all projects are evaluated or, if you want to get the hook in earlier in the lifecycle than
that, after all projects are loaded. This is what gradle.projectsLoaded() and gra
dle.projectsEvaluated() are for.

The gradle.projectsLoaded() method takes a closure that runs after all projects are
loaded. This event fires at the end of the initialization phase, before any project evalu‐
ation has begun. Of course, not much of the Gradle object model is available for ex‐
amination or configuration at this point in the lifecycle, but useful work is still possible.
The gradle object is passed to the closure as a parameter (named g in Example 3-3),
and can be operated upon as usual. This example shows the buildscript block being
configured with classpath dependencies to support the loading of custom plug-ins in
other builds within the project. This buildscript config—often an annoying bit of noise
in small builds—is now abstracted away through the work of the projectsLoaded()
hook.

Example 3-3. Hooking the end of the initialization phase in the settings.gradle file
gradle.projectsLoaded { g ->
 g.rootProject.buildscript {
 repositories {

38 | Chapter 3: Build Hooks

4. Recall the discussion of the Gradle lifecycle.

 mavenCentral()
 }
 dependencies {
 classpath 'com.augusttechgroup:gradle-liquibase-plugin:0.7'
 classpath 'com.h2database:h2:1.3.160'
 }
 }
}

The projectsEvaluated() method similarly takes a closure that runs after all projects
have been evaluated.4 This event fires at the end of the configuration phase, before any
build execution has begun. The entire project graph is available for inspection and ma‐
nipulation at this point, and the caller can be assured that no build activity has taken
place at the time the hook runs.

Build Finished
You may want to know when a build is finished, and whether it ran to completion or
encountered an error. Certainly your build’s command-line user interface or continuous
integration framework is going to give you this feedback, but we can imagine other ways
we might want to capture this status and act on it.

If the build fails, it fails because some part of the build threw an exception. A build that
runs to completion without throwing an exception is considered successful. This status
is reflected in the buildFinished() closure through the BuildResult instance passed
to it (Example 3-4).

Example 3-4. Hooking the build finished event
gradle.buildFinished { buildResult ->
 println "BUILD FINISHED"
 println "build failure - " + buildResult.failure
}

task succeed {
 doLast {
 println "hello, world"
 }
}

task fail {
 doLast {
 throw new Exception("Build failed")
 }
}

Advising Project Evaluation | 39

http://www.gradle.org/docs/current/javadoc/org/gradle/BuildResult.html

Running gradle succeed at the command line produces the output sequence in
Example 3-5.

Example 3-5. The output of the succeed task
$ gradle succeed

:succeed
hello, world

BUILD SUCCESSFUL

Total time: 1.374 secs
BUILD FINISHED
build failure - null

Note the last two lines of the output. After Gradle reports the build has finished with
Total time: 1.374 secs, our buildFinished() hook runs, reporting that that build
has finished, and printing the value of buildResult.failure, which is null.

Running gradle fail at the command line captures an exception (Example 3-6). Note
that the BUILD FINISHED line is still emitted, even though the build failed. Our hook
runs in both cases, but only has a non-null gradle.failure property when there is a
failure to report. This object is an internal Gradle API type that wraps the root-cause
exception. We can inspect it to determine the cause of the failure, display it in a auto‐
mated build console, or simply log it.

Example 3-6. The output of the succeed task
$ gradle fail

:fail FAILED

FAILURE: Build failed with an exception.

* Where:
Build file '/Users/tlberglund/Documents/Writing/Gradle/oreilly-gradle-book-examples/
hooks-lab/build-finished/build.gradle' line: 14

* What went wrong:
Execution failed for task ':fail'.
> java.lang.Exception: Build failed

* Try:
Run with --stacktrace option to get the stack trace. Run with --info or
--debug option to get more log output.

BUILD FAILED

Total time: 1.453 secs
BUILD FINISHED

40 | Chapter 3: Build Hooks

build failure - org.gradle.api.internal.LocationAwareException: Build file '/Users/
tlberglund/Documents/Writing/Gradle/oreilly-gradle-book-examples/hooks-lab/build-
finished/build.gradle' line: 14
Execution failed for task ':fail'.

Rules
Typically, a task is a specific activity with a specific name. For example, the build task
in a Java project compiles and tests all of the code. It always does that same thing, and
it is always called by the same name. It is like a particular method written into a particular
class: specific and identifiable.

However, what if your task is less predictable? Cases commonly arise in which you have
a certain kind of build activity to carry out that follows a general template but needs to
vary with circumstances. For example, you might want a family of tasks that do the same
kind of deployment, but to different hosts, or the same kind of binary repository de‐
ployment, but with different archives.

The impulse is to want to pass arguments to tasks, which isn’t possible. It’s easy enough
to parameterize imperative task activity with a System property, an environment vari‐
able, or even a variable in the build script itself, but those solutions also founder on
complexity considerations. They introduce extra coupling of the build to states outside
the build script, and their activity is not visible at the level of the task graph—the fun‐
damental data structure that defines a Gradle build and provides opportunities for
hooking and tooling integration. In Gradle, wherever possible, we want to expose dis‐
crete and specifically named tasks to the build user. An effective way to solve the problem
of dynamic task behavior within this constraint is through the use of rules.

Any time the build user references (i.e., executes or tries to configure) a task that doesn’t
already exist, Gradle consults the project’s task rules. Task rules are able to respond to
the request for a nonexistent task in any way they wish, but it is very common for a rule
to create a task on demand based on the name of the requested task. This is useful for
creating tasks dynamically based on other build configuration. If you’re familiar with
the methodMissing and propertyMissing facilities of Groovy or Ruby’s method_miss
ing, you’ve already got the idea.

The Gradle Java plug-in uses rules to provide tasks for targeted building, binary repos‐
itory uploading, and cleaning. To see how rules work, let’s take a look at the simplest of
these three rules: the clean rule.

There is a general-form clean task in every Java build, which simply deletes the build
directory. However, we might want to clean only the result of one particular task that
contributes to the build. In a Java project, both the compileJava task and the process
Resources task create content in the build directory: the compile task by putting class
files by default under build/classes/main, and the resources task by putting them by

Rules | 41

default under build/resources/main. We can see this after compiling this example
project. Here we see the build directory after running the build task:

build
├── classes
│ └── main
│ └── org
│ └── gradle
│ └── poetry
│ └── PoetryEmitter.class
├── libs
│ └── java-build-with-resources.jar
└── resources
 └── main
 ├── chesterton.txt
 ├── henley.txt
 ├── shakespeare.txt
 └── shelley.txt

Java classes have been compiled, static resources have been copied, and a JAR has been
created. Simply running clean at this point will delete the entire build directory, wiping
out all three of those resources indiscriminately. However, running cleanJar will delete
only the JAR file, and running cleanResources will surgically remove only the build/
resources directory.

Here’s a partial listing of the build directory after running cleanResources:

build
├── classes
│ └── main
│ └── org
│ └── gradle
│ └── poetry
│ └── PoetryEmitter.class
└── libs
 └── java-build-with-resources.jar

This simple example may not show particularly advanced behavior—judicious use of
the rm command would do the same thing—but it does illustrate the power of task rules.
The possibilities are compelling indeed.

Creating a Rule
Let’s create a rule to ping an arbitrary server and store the results of the ping. We’ll log
them in the build directory and store them in the extended properties of the task itself,
so other tasks in the build can optimize their activity based on the availability of the
pinged server.

Pinging a server is a one-line operation in Java (and by extension, in Groovy), but we
don’t want to write a specific ping task for every server we might need to contact.

42 | Chapter 3: Build Hooks

http://bit.ly/12VLviQ
http://bit.ly/12VLviQ

Moreover, it isn’t long before we take a one-line operation and start adding handling
for various error cases and output formats. This is a very common story for small chunks
of code that start off as simple operations, but grow in complexity over time. To keep
the complexity manageable, it would be good to have that code in one place, not spread
across multiple tasks containing their own customized configuration, as in Example 3-7.

Example 3-7. A rule for checking the HTTP-reachability of an arbitrary server
ext {
 pingLogDir = "${buildDir}/reachable"
}

tasks.addRule('Rule Usage: ping<Hostname>') { String taskName ->
 if(taskName.startsWith('ping')) {
 task(taskName) {
 ext.hostname = taskName - 'ping'
 doLast {
 def url = new URL("http://${ext.hostname}")
 def logString
 try {
 def pageContent = url.text
 // Do some regex matching on pageContent
 logString = "${new Date()}\t${ext.hostname}\tUP\n"
 ext.up = true
 } catch(UnknownHostException e) {
 logString = "${new Date()}\t${ext.hostname}\tUNKNOWN HOST\n"
 ext.up = false
 } catch(ConnectException e) {
 logString = "${new Date()}\t${ext.hostname}\tDOWN\n"
 ext.up = false
 }
 file(pingLogDir).mkdirs()
 file("${pingLogDir}/ping.log") << logString
 }
 }
 }
}

Presumably, using HTTP for reachability would also be accompanied by some parsing
of the message body that was returned. This could easily be added to the script in an
imperative way through Groovy’s regular expression facilities; however, this class is
already getting a little bit long. We might want to look at a better solution for managing
all that imperative code.

Dealing with Imperative Rule Code
Our current rule definition relies on 18 lines of doLast code, which is probably too
much imperative code for a well-factored, maintainable build. We can’t test it, and as of
this writing, most tooling does not support Groovy script development inside a Gradle

Rules | 43

build as well as it supports coding in conventional Groovy classes. The solution to this
problem is the Rule interface.

You may recall that every Gradle build has an embedded Groovy project in it in the
buildSrc directory. If this project exists, it is built prior to running the main build, and
all of the classes it generates are made available to the build script classpath. It’s a con‐
venient staging ground to begin creating a Rule class and some tests for it.

The basic skeleton of a Rule class is shown in Example 3-8. The interface specifies two
methods: a getter for the description, which is used by the tasks task to document
whatever rules are present in the build, and the apply() method, which will eventually
create our new task. This class goes in the buildSrc/src/main/groovy/org/gradle/exam‐
ples/rules directory of our build.

Example 3-8. The minimal Rule class
import org.gradle.api.Rule

class HttpPingRule implements Rule {

 String getDescription() {
 'Rule Usage: ...'
 }

 void apply(String taskName) {
 }
}

And now our build file becomes radically simpler. All of the imperative code has been
removed from the build and placed in a source file where it belongs, so our build looks
like Example 3-9 now.

Example 3-9. The build file is much smaller with a class-based rule definition
import org.gradle.examples.rules.HttpPingRule

tasks.addRule(new HttpPingRule(project))

Running gradle tasks will now reveal the task rule definition after the statically defined
tasks are listed.

Fleshing the rule definition out a bit, we might want to add code in the apply() method
to test the name of the task being referenced. (Remember, the point of a task rule is to
capture references to tasks that don’t exist, and create them if their name matches some
convention.) Adding a bit more functionality to apply(), we have what we see in
Example 3-10.

44 | Chapter 3: Build Hooks

http://bit.ly/1detbDn

Example 3-10. A Rule class that creates a task in the apply() method
import org.gradle.api.Rule

class HttpPingRule implements Rule {

 def project

 HttpPingRule(project) {
 this.project = project
 }

 String getDescription() {
 'Rule Usage: ping<Hostname>'
 }

 void apply(String taskName) {
 if (taskName.startsWith('ping')) {
 project.task(taskName) {
 ext.hostname = taskName - 'ping'
 doLast {
 println "PING ${ext.hostname}"
 }
 }
 }
 }
}

This rule definition can be further expanded with actual network reachability code in
place of the println() call, with that functionality comfortably factored into methods
as we see fit. But more importantly, since this rule is now a class, we can test it.

If we place a JUnit or TestNG test in buildSrc/src/test/groovy/org/gradle/examples/rules/
HttpPingTests.groovy, the default Gradle unit test support will run the test prior to run‐
ning our build. Since the topic of unit testing is already covered in Building and Testing
with Gradle —and the buildSrc project works exactly like a normal project in this
regard—I will invite you to explore the full example code at your leisure.

Generalizing Rules Beyond Tasks
The rules we’ve programmed so far have all been task rules, or rules that create new tasks
on demand. As it turns out, Gradle’s rule API doesn’t exist specifically at the task level,
but rather at the level of the named domain object collection. That is, any named col‐
lection of things in Gradle—SourceSets, configurations, custom domain objects—can
be created by rules.

Rules | 45

https://github.com/gradleware/oreilly-gradle-book-examples/tree/master/hooks-rule-class
http://bit.ly/1ayYRY3

Conclusion
When you have full control over the build source and are writing your own plug-in,
often the easiest way to introduce new functionality is simply to code it directly into
your custom plug-in. However, at times when build source is not available to you or is
not convenient to modify, build hooks and rules provide powerful mechanisms for
bringing concepts from aspect-oriented programming and metaprogramming into
your build development.

46 | Chapter 3: Build Hooks

CHAPTER 4

Dependency Management

Dependencies are a formidable challenge, whether they are dependencies in a Java build,
in a Ruby project, or in any other kind of system. For one thing to depend on another
means accepting the liability that the depended-on thing might not be available when
we need it, might be expensive to obtain, or might not work in the way we expected.
Programmers are painfully familiar with these costs.

Dependencies can seem like an annoyance—indeed, much of the undeserved criticism
commonly directed against Maven focuses on dependency management—but they are
an unavoidable fact of a complex ecosystem and are a sign that the actors in that eco‐
system are trying to divide up their labor in worthwhile ways. Therefore, Gradle em‐
braces dependency management.

We will consider the problem of dependency management primarily from a Java per‐
spective, since the Java community has excelled both in creating an enormous depend‐
ency management problem, and in solving it effectively. Java’s early embrace of open
source caused thousands of software modules to proliferate, and typical projects soon
came to depend on dozens of these individual modules. The modules, in turn, depend
heavily on one another.

Of course, Java dependency management solutions also apply to related languages of
the JVM. Groovy and Scala builds will apply the exact same techniques shown in this
chapter.

What Is Dependency Management?
You may have worked with a build that constructed the compile classpath for your
compile step by blindly grabbing all the JAR files in a certain directory (usually called
“lib”). Inevitably, this becomes a problem over time as the software grows. It becomes
more and more costly to change or remove dependencies as it becomes increasingly
difficult to determine the impact of doing so. By managing (i.e., declaring) your

47

dependencies as part of the definition of how your software builds, the dependencies
can be understood and analyzed. Having your JAR files in the lib directory is not the
problem. It’s that they are being used indiscriminately and that the relationships between
them are completely opaque. Dependency management solves this problem.

It is common to see “dependency management” inaccurately equated with the automa‐
ted fetching of dependencies from a remote source or even the automated fetching of
transitive dependencies (i.e., dependencies of dependencies). This is a benefit of de‐
pendency management, not its essence. By declaring and modelling dependencies,
tooling such as Gradle can automate working with dependencies by leveraging this
information. This includes automatically fetching dependencies, detecting transitive
dependency conflicts, and so on.

Gradle embraces dependency management at its core and provides excellent support
for dependency automation.

Dependency Concepts
In a Gradle build script, you declare dependencies via a DSL (Example 4-1).

Example 4-1. An example of declaring a dependency
repositories {
 mavenCentral()
}
configurations {
 compile
}
dependencies {
 compile 'org.springframework:spring-core:3.0.5'
}

The preceding example shows three key concepts to Gradle dependency management:
configurations (compile), dependencies (org.springframework:spring-core:3.0.5),
and repositories (mavenCentral()). A “configuration” is a named grouping of depen‐
dencies. A Gradle build can have zero or more of them. A “repository” is a source of
dependencies. Dependencies are often declared via identifying attributes, and given
these attributes, Gradle knows how to find a dependency in a repository.

In a typical Gradle build, configuration declaration is done implicitly, and configura‐
tions fade in to a background role whose details are managed by plug-ins. However, you
will not fully understand Gradle dependency management without understanding con‐
figurations thoroughly, so we’ll begin with them.

48 | Chapter 4: Dependency Management

Configurations
Configurations are fundamentally named buckets of files that are filled up with depen‐
dencies. A Configuration is a special type of FileCollection. Recall that a FileCol
lection is a lazy specification of files that when queried (i.e., when the actual files are
asked for), turns that specification into a concrete list of files. Configurations are used
in a similar way, except that rather than being a specification of plain files on the file‐
system, they are a specification of “dependencies” that may exist locally, on the network,
or in some other abstract location. Different kinds of dependencies are resolved into
files in different ways. While this is the fundamental role of configurations, they also
provide methods for querying the declared dependencies and customizing the resolu‐
tion process.

The Java plug-in introduces six configurations:

• archives

• default

• compile

• runtime

• testCompile

• testRuntime

The archives and default configurations are actually created by the
base plug-in, that is itself implicitly applied by the java plug-in. We
can ignore this detail for the rest of this discussion.

The compile configuration contains all dependencies required to compile the code.
When the Java plug-in’s compileJava task invokes the javac compiler, it must provide
a classpath. In a completely imperative build in which it’s your job to build up all those
command-line parameters by hand (such as might be the case in a typical Ant build),
you’d have to collect all of the JAR files the compiler might need to resolve import
statements in the compiled code. Assigning compile-time dependencies to the compile
configuration accomplishes this same goal, since the compile classpath used by compi
leJava task is formed internally from the compile configuration (Example 4-2).

Example 4-2. Declaring the default configurations
configurations {
 compile
 runtime
 testCompile.extendsFrom('compile')

Dependency Concepts | 49

http://bit.ly/135LKIa

 testRuntime.extendsFrom('runtime', 'testCompile')
 default.extendsFrom('runtime')
}

Automated tests have different dependency requirements than the main set of source
files. They will typically need every single external dependency required to compile the
main sources, and will need several other modules in addition: a unit testing framework,
a mocking framework, a test-friendly database driver, or others in this vein. Not only
that, but automated tests also depend on the compiled output of the main source set.
The Java plug-ins introduces the testCompile configuration to handle this collection
of files. When the compileTestJava task runs the javac compiler, it looks to this con‐
figuration to set the compiler’s classpath.

Often, projects will depend on modules that must be available at runtime, but need not
be fetched or made available on the compile-time classpath. A common example is a
JDBC driver, in which the application code is compiled against interfaces in the Java
standard libraries, while the implementation is provided by a vendor. The java plug-in
provides the runtime and testRuntime configurations for this purpose. These are used
to create deployment archives and execute test code, but do not add to the compile-time
classpath at all. The runtime configuration does contain the output of the compileJa
va task, of course, since a project’s .class files are necessarily required to run the project.

The default configuration is almost never directly used in a build, but participates in
project-level dependency declaration. When one build depends on another build as a
subproject, Gradle’s default behavior is to include all of the files in this configuration.
It extends runtime by default.

The Gradle war plug-in adds providedCompile and providedRun
time configurations that can be used to achieve the same effect as the
Apache Maven dependency scope of provided. See the Gradle user
guide for more information.

Extending configurations

When we say that default extends runtime as shown in Example 4-2, we might intui‐
tively understand the mechanism, but it’s still worth some explanation. To see the details,
let’s look back at another case: how the testCompile configuration provides depen‐
dencies to the compileTestJava task. When compiling unit tests, we are likely to need
access to every single compile-time dependency that the main source code needs, plus
several other things (e.g., non-production mocks or stubs, a testing framework, etc.).
Strictly speaking, testCompile is a superset of compile. Gradle supports this relation‐
ship by allowing one configuration to extend another.

50 | Chapter 4: Dependency Management

http://bit.ly/1drgrsV
http://bit.ly/1drgrsV

1. Hibernate and the Spring Framework are actually composed of several distinct modules each. Some of those
modules depend on one another, and some stand alone, depending only on modules outside of their respective
frameworks.

You can see the configuration extension syntax in Example 4-2. Calling the exten
dsFrom() method on a configuration indicates that it will contain all of the files of the
extended configuration automatically, plus any other files you add to the extending
configuration explicitly.

The “extends” relationship between configurations is entirely mutable. If for some rea‐
son you do not want the runtime configuration to extend from the compile configu‐
ration you can simply remove it from the extendsFrom collection (Example 4-3).

Example 4-3. Changing which configurations a configuration extends from
configurations {
 runtime.extendsFrom.remove(compile)
}

Module Dependencies
Now that we have a scheme for organizing dependencies, let’s turn our attention to the
most common kind of dependency in a Gradle build: the module. Module dependencies
are JAR files built by some other build external to the project in question. Various open-
source Java projects are good examples of modules, like Commons Logging, Hibernate,
or the Spring Framework.1

Modules are typically identified by a vector of three parameters: group, name, and ver‐
sion. The group specifies the organization responsible for the module, and is often—
but not always—a reverse domain name (like org.apache.solr, or org.springframe
work, or an outlier like junit). The name is a unique label for the module itself, and is
often the same as the project name (like solr-core, spring-web, or junit). The version
identifies which release of the project you are depending on (like 1.4.1, 3.0.2, or
4.8). These three vector elements can be expressed together in a string delimited by
colons, as shown in Example 4-4.

Example 4-4. Declaring dependencies with group-name-version strings
dependencies {
 compile 'org.apache.solr:solr-core:1.4.1'
 compile 'org.springframework:spring-core:3.0.5'
 testCompile 'junit:junit:4.8'
}

Alternatively, the three elements can be expressed as a Groovy map, with their names
explicitly called out. Example 4-5 illustrates this format. Note that only the name field is
required for a dependency declaration; group and version are optional.

Dependency Concepts | 51

Example 4-5. Declaring dependencies with Groovy map syntax
dependencies {
 compile group: 'org.apache.solr', name: 'solr-core' version: '1.4.1'
 compile group: 'org.springframework', name: 'spring-core', version: '3.0.5'
 testCompile group: 'junit', name: 'junit', version: '4.8'
}

By default, Gradle dependencies are transitive. Transitive dependencies are described
more in “Maven Repositories” on page 56, but for now, all you need to know is that one
module may depend on other modules, and Gradle can discover those dependencies-
of-dependencies when it resolves the declared dependency against a repository. This is
almost always an enormous time-saver, but sometimes it can create problems. If you
depend on version 1 of module A and version 2 of module B, and module A transitively
depends on version 3 of module B, you may not want Gradle to resolve that final de‐
pendency. The wrong version of a JAR file might make it into your compile or runtime
classpath—and most Java developers know what a frustrating experience that can be.

Happily, you can alter transitive dependency resolution in three separate ways: you can
disable it altogether (Example 4-6), you can disable individual transitive dependencies
from being resolved (Example 4-7), and you can force a particular dependency to be
the victor when two versions are in conflict (Example 4-8). Let’s take a look at the syntax
for each of these.

Example 4-6. Fetching Spring Core 3.0.6 without any of its dependencies
dependencies {
 compile('org.springframework:spring-core:3.0.6') {
 transitive = false
 }
}

Example 4-7. Forcing Spring Core 3.0.6 to dominate any other versions of Spring Core
in the dependency graph
dependencies {
 compile('org.springframework:spring-core:3.0.6.RELEASE') {
 force = true
 }
}

Example 4-8. Avoiding commons-logging as a transitive dependency of Spring Core
dependencies {
 compile('org.springframework:spring-core:3.0.6.RELEASE') {
 exclude name: 'commons-logging'
 }
}

52 | Chapter 4: Dependency Management

Dynamic Versions
Specifying a particular version like 3.0.6 in a dependency declaration guarantees that
Gradle downloads the same module every time it runs the build, assuming that all
repositories are properly maintained. This is bedrock functionality, but sometimes we’d
like to make a minor adjustment to the way it works: sometimes we want Gradle to
download the most recent version it can find of a given module.

Using dynamic dependencies can be risky, since a new release to a declared repository
will cause a future execution of the build to produce different output artifacts—even
though the build’s sources didn’t change at all. However, build masters may decide to
use this technique for principled reasons, and Gradle supports it fully (Example 4-9).
This feature interacts with the dependency cache in important ways. You should un‐
derstand the cache well if you plan on using dynamic versions.

Example 4-9. Two different syntaxes for declaring dynamic dependencies
dependencies {
 compile 'org.springframework:spring-core:3.0.+'
 testCompile 'junit:junit:4.8+'
}

File Dependencies
Declaring a dependency on a Maven-style group:name:version vector implies that the
module is probably going to be resolved against some external repository like Maven
Central. However, even in a conventional project where most dependencies are man‐
aged in this way, you might still come up with a module you need to include in your
build that is not available in any managed repository. It might be a vendor JAR that is
only available by direct download, or a binary patch of a module that you can’t con‐
veniently deploy to any internal binary artifact repository. Regardless of the reason,
Gradle is ready to help with file dependencies.

Since a dependency configuration is fundamentally a collection of files, it’s easy enough
to add more files to it by brute force. In this situation, you are likely to create a lib
directory at the root of your project and place the files in there (Example 4-10).

Example 4-10. Declaring a dependency explicitly on a locally managed module
dependencies {
 compile files('lib/hacked-vendor-module.jar')
}

Of course, this practice may get out of hand, and you may soon find that you have a
whole lib directory full of modules, just like the pattern typically followed by Ant builds.
This isn’t necessarily to be encouraged, but you can grab all of those files in one
declaration, even if you’ve created a nested directory structure under the top-level lib
directory (Example 4-11).

Dependency Concepts | 53

Example 4-11. Depending recursively on all of the files under lib
dependencies {
 compile fileTree('lib')
}

Project Dependencies
Separate builds in a multi-project build may depend on one another. A multi-project
build is an arbitrary configuration of projects that are all evaluated together by Gradle
at build time. Each build’s Project object is related to other builds’ Project objects in
a project graph. Gradle doesn’t prescribe the exact nature of these relationships, but
rather provides you with a syntax to express them. When you are expressing a rela‐
tionship between projects, you are really indicating that one project depends on another.

Looking at the multiproject example code, you recall that the project was structured as
one top-level command line driver utility, plus one subproject that provided text con‐
tent, and another that provided text encoding services. In this multiproject system, the
top-level project depended on the two subprojects, and each of those subprojects was
fully independent of each other. Note Example 4-12, and the section of the build file in
the top-level project.

Example 4-12. Declaring dependencies on subprojects
dependencies {
 compile project(':codec')
 compile project(':content')
}

The code in Example 4-12 indicates that the top-level project has a compile-time de‐
pendency on both the :codec and the :content subprojects. Of course, a project is not
a collection of files, and a dependency must eventually resolve to a file collection in
order to be added to a named configuration like compile or runtime. When you depend
on a project as shown in the example, Gradle assumes you mean the default configu‐
ration, which includes all of the compiled output of the project and all of its compile-
time and runtime module dependencies. The default dependency configuration is
covered in more detail in “Configurations” on page 49.

Of course, you might not want to grab all of the files in default. You might have designed
a subproject’s dependency configurations intentionally to publish only certain files to
external projects. In Example 4-13, the project() method takes a map with parameters
for the project path and the desired dependency configuration.

54 | Chapter 4: Dependency Management

http://bit.ly/14Glggc

Example 4-13. Declaring an explicit configuration dependencies on a subproject
dependencies {
 compile project(path: ':codec', configuration: 'published')
 compile project(':content')
}

Internal Dependencies
The Gradle dependency DSL offers a couple of convenience methods that are particu‐
larly useful when writing code to extend Gradle itself. These are the gradleApi()
method and the localGroovy() method.

If you are writing custom tasks or a custom plug-in, you will be programming Gradle’s
APIs directly, and will therefore have a compile-time dependency on them. This sort of
dependency is similar in principle to the compile-time dependency you might have on
any API you are programming, like what you might see if you are writing MapReduce
jobs for execution on a Hadoop cluster or writing enterprise integration code with
Apache Camel.

However, since the classes you are importing happen to be available in the same Gradle
runtime package that’s interpreting and executing the build, Gradle provides a method
you can use to access those classes directly without having a true external dependency
(Example 4-14).

Example 4-14. Depending on the Gradle API
dependencies {
 compile gradleApi()
 // other dependencies...
}

Also, while you can extend Gradle in any one of a variety of JVM languages, many Gradle
developers have historically preferred do so in Groovy. Plug-ins and custom tasks writ‐
ten in Groovy share a common syntax with Gradle build files, and as a high-productivity
dynamic language, Groovy serves the build developer well.

Gradle’s Groovy plug-in makes building code in Gradle easy, but it does require one
extra step: configuring a dependency on a particular version of Groovy (Example 4-15).
This is normally done by assigning the dependency vector of a particular version of
Groovy to a special dependency configuration called groovy.

Example 4-15. The configuration of a typical Groovy build
apply plugin: 'groovy'

// Repository declaration

dependencies {
 groovy 'org.codehaus.groovy:groovy:2.0.5'

Dependency Concepts | 55

 // other dependencies...
}

If you’re developing code to extend Gradle itself, you don’t have to declare a particular
version of Groovy to use. Since Gradle’s build files are Groovy scripts, every Gradle
installation already contains a version of Groovy. Your custom task, plug-in, or other
Gradle extension will necessarily run using the same version of Groovy as the version
of Gradle for which you are writing the extension. Gradle therefore provides the local
Groovy() method to make that local Groovy version available to your build without
creating a true external dependency (Example 4-16).

Example 4-16. Depending on Gradle’s internal version of Groovy
apply plugin: 'groovy'

dependencies {
 groovy localGroovy()
 // other dependencies...
}

Repositories: Dependency Resolution
Dependencies are, by definition, things external to the build. Once they are declared,
this means Gradle must go get them from somewhere. In Gradle, the place dependencies
are fetched from is called a repository.

Every Gradle project has an internal list of repositories. By default, this list is empty, but
we can add to it by using the repositories block. Gradle uses the repositories at build
execution time to fetch the build’s dependencies and store them in a cache. There are
three kinds of repositories currently supported by Gradle: Maven repositories, Ivy re‐
positories, and static directories. We’ll describe each one in turn, paying particular at‐
tention to its configuration DSL.

Maven Repositories
One of Maven’s most valuable innovations was the Maven Central repository. Not only
does it serve as a publicly accessible repository of thousands of open-source Java mod‐
ules, but its structure and access protocol are open as well. Many other Maven-style
repos exist on the Internet and inside corporate networks all over the world. Gradle
supports these as first-class citizens.

As described in the section on module dependencies, artifacts in a Maven repository
are usually identified by three coordinates: group, name, and version. This self-
describing coordinate tuple was originally introduced to the Java ecosystem by the
Maven repository format. In addition, modules may be qualified by their classifier and
type. The classifier usually differentiates between the code, JavaDocs, and source

56 | Chapter 4: Dependency Management

archives. The type indicates whether the module is packaged as a JAR or some other
archive format. classifier and type are often omitted from declarations, but are a
supported part of the Maven repository format.

The primary value of Maven repositories is not that they offer a standard means of
storing and retrieving executable code, source, and documentation over the Internet,
but that they describe the dependencies between those modules as well. Each Maven
coordinate, whether it corresponds to any code, source, or JavaDocs at all, always de‐
scribes an XML descriptor file called a POM (Project Object Model). The POM file
contains various metadata about the module, not least is the list of other modules re‐
quired for the POM’s module to function. By default, Gradle recursively fetches these
dependencies from the repository and caches them on disk.

Since a Maven repository is nothing more than a website containing downloadable POM
files and modules in a predictable directory structure, declaring a Maven repository in
Gradle begins with telling Gradle the URL of the repo. The most common Maven
repository is the Central repository at http://repo1.maven.org/maven2/; however,
Gradle provides a convenience method to avoid scripting that URL directly into your
build (Example 4-17).

Example 4-17. Declaring the Central repository
repositories {
 mavenCentral()
}

Central may be the most-frequently used Maven repository, but it is hardly the only
one. Many other open-source Maven repositories exist on the Internet, and still more
exist within the private networks of companies using Gradle for their enterprise builds.
Sonatype’s Nexus and JFrog’s Artifactory are two examples of products that can be used
to deploy Maven-style binary repositories internally. Declaring such a repository in
Gradle is a simple matter of providing the URL (Example 4-18).

Example 4-18. Declaring Maven repositories in general
repositories {
 maven {
 url = 'http://download.java.net/maven/2'
 }
 maven {
 name = 'JBoss Repo' //optional name
 url = 'https://repository.jboss.org/nexus/content/repositories/releases'
 }
}

A Maven repository is merely a website that serves POMs and artifacts through a well-
defined URL naming scheme. In some cases, we might want to obtain POMs from one
website (say, a centralized corporate repo), but download build artifacts from a mirrored

Repositories: Dependency Resolution | 57

http://www.sonatype.org/nexus/
http://www.jfrog.com/home/v_artifactory_opensource_overview

2. In organizations with globally distributed teams, words like “workday” and “nightly” begin to lose crisp
definition, but these remain the terms normally used to discuss builds of this kind.

copy of the repo somewhere else in the network (Example 4-19). We might be motivated
to do this to reduce bandwidth consumption or increase download speeds between the
build server and the main repository. Regardless of our reason, Gradle makes this easy.

Example 4-19. Setting the artifact URL as distinct from the default POM URL
repositories {
 // Overriding artifacts for an internal repo
 maven {
 url = 'http://central.megacorp.com/main/repo'
 artifactUrls = ['http://dept.megacorp.com/local/repo']
 }
 // Obtain Maven Central artifacts locally
 mavenCentral artifactUrls: ['http://dept.megacorp.com/maven/central']
}

Maven famously caches all of its dependencies in the ~/.m2 directory, which is some‐
times called the local Maven repository. Gradle maintains its own caching mechanism,
but some builds might want to be able to dip into Maven’s local cache to resolve depen‐
dencies. The most common use case for this is when a build needs to access a custom
version of some other module, especially when that customization is itself under de‐
velopment and is not ready to publish to the outside world. Asking Gradle to attempt
to resolve dependencies against the local Maven repo is simple (Example 4-20).

Example 4-20. Resolving dependencies against the ~/.m2 local Maven cache
repositories {
 mavenLocal()
}

Changing modules
Maven repositories can also host snapshots, or what Gradle calls changing modules. A
changing module is one whose version is presently in a state of flux, and can’t mean‐
ingfully be pegged to a single version number. Changing modules can represent code
that is under active development during the workday, or code that is being rebuilt nightly
given whatever state the code happens to be in at the end of the day.2 They are still
managed dependencies, but because they are subject to change, their caching semantics
are different.

Normally Gradle caches a module once and never reloads it from its source repository
again, since versioned modules are supposed to be immutable. However, changing
modules explicitly disclaim immutability, so cached copies of those modules must be
expired after some time. By default, changing modules are refetched after 24 hours in

58 | Chapter 4: Dependency Management

the cache. You can override this default by configuring the global dependency resolution
strategy.

Ivy
Apache Ivy was developed as an extension to the Ant build tool to provide Maven-style
binary artifact management. It was never deployed as widely as Maven-style repos have
been, but it sees some continued use at the time of this writing in connection with
enterprise Ant builds.

In principle, Ivy repositories function very much like Maven repositories. Artifacts are
identified by a vector composed of a group name, a module name, and a version. Re‐
positories reside either at HTTP-addressable URLs or in the file system. Repository
metadata, held in ivy.xml files, expresses transitive dependency relationships. And of
course, declaring an Ivy repository in Gradle is trivial (Example 4-21).

Example 4-21. Declaring an Ivy repository using the default Maven layout
repositories {
 ivy {
 url 'http://build.megacorp.com/ivy/repo'
 }
}

Ivy differs from Maven in that its repositories do not always follow the same directory
structure as one another. Maven repos have a fixed structure that follows the group,
artifact, or version hierarchy, but Ivy repos may be organized along different lines. If we
provide no artifact or Ivy mappings (as in Example 4-21), Gradle assumes that the Ivy
repo uses the default Maven structure. However, we can define a custom layout easily
enough.

Example 4-22 shows a repository that hosts all of its artifacts and ivy.xml files at a
particular URL, but locates the JAR and Ivy files at different paths on the server. The
portions inside square brackets (e.g., [module], [artifact], etc.) are substituted for
the value of the dependency being resolved. The strings in Table 4-1 are supported.

Table 4-1. The mapping of Ivy repository variables to dependency parameters
Ivy repository variable Dependency parameter

[organisation] group

[module] name

[revision] version

[artifact] name

[ext] type

[classifier] classifier

Repositories: Dependency Resolution | 59

http://ant.apache.org/ivy/

Example 4-22. Declaring an Ivy repository using a named custom layout
repositories {
 ivy {
 url 'http://build.megacorp.com/ivy/repo'
 layout 'custom', {
 artifact "artifacts/[module]/[revision]/[artifact].[ext]"
 ivy "ivy/[module]/[revision]/ivy.xml"
 }
 }
}

Moreover, a single Ivy repo may place its ivy.xml files and its binary modules at entirely
separate URLs. If there is no common base URL between artifacts and Ivy files, use the
syntax in Example 4-23.

Example 4-23. Declaring an Ivy repository using custom artifact and ivy.xml URLs
repositories {
 ivy {
 artifactPattern "http://build.megacorp.com/ivy/repo/artifacts/[organisation]/
[module]/[revision]/[artifact]-[revision].[ext]"
 ivyPattern "http://build.megacorp.com/ivy/repo/ivy-xml/[organisation]/[module]/
[revision]/ivy.xml"
 }
}

Repository Credentials
Most Internet-based binary repositories exist to serve open-source artifacts, so they are
open to everyone without authentication. Likewise, most corporate repositories exist
inside trusted networks where company employees can access them freely. However,
sometimes repositories have to be secured with basic username and password authen‐
tication. Maven and Ivy repositories both have mechanisms for doing so, and so Gradle
has a common configuration DSL to provide these credentials in the build
(Example 4-24).

Example 4-24. Adding credentials to a repository declaration, insecurely
repositories {
 maven {
 url = 'http://central.megacorp.com/main/repo'
 credentials {
 username 'repouser'
 password 'badly-protected-secret'
 }
 }

}

60 | Chapter 4: Dependency Management

The problem with the naive implementation is that the password is in the build script
in plain text, and is therefore checked into source control. This is, putting it mildly, not
prudent password management. A better option is to put the password in an environ‐
ment variable or an external properties file. Gradle automatically reads the gradle.prop‐
erties file at startup, making build script variables out of each of the properties defined
therein (Example 4-25). This is a convenient place to put passwords, as long as there is
no other configuration in the file that needs to be checked into source control
(Example 4-26).

Example 4-25. An example gradle.properties file containing a password
megacorpRepoPassword=well-protected-secret

Example 4-26. Adding credentials to a repository declaration, accessing the password
through a properties file
repositories {
 maven {
 url = 'http://central.megacorp.com/main/repo'
 credentials {
 username 'repouser'
 password megacorpRepoPassword
 }
 }

}

Using gradle.properties is viable only if it can be kept out of source control though a
mechanism like the .gitignore file or the svn:ignore property, or a similar technique
appropriate for the version control system in use. If you can’t afford to ignore this file
due to other content you have decided to place in it, you can create a custom properties
file and read it explicitly in your build script using the java.util.Properties API and
Gradle’s native Groovy scripting.

Static Dependencies
Most contemporary open-source and enterprise builds use transitive dependency man‐
agement through Maven-style repos, but not every build in the world does. An older,
Ant-based system might use static dependency management, where a single lib directory
holds all of the JAR files the build needs. This might not be the preferred practice for
new designs, but a prudent build migration process might only choose to attack one
problem at a time, preferring to migrate core build functionality to Gradle before re‐
designing dependency management as well.

Other builds might use managed dependencies as much as possible, but occasionally
fall back to static management for pragmatic reasons. For example, if you need to hack
an old, unsupported vendor JAR at the bytecode level, or otherwise have a highly custom

Repositories: Dependency Resolution | 61

http://docs.oracle.com/javase/6/docs/api/java/util/Properties.html

build of some external module, it might make more sense to control that JAR with your
source code rather than publish it to a binary repository. This scenario is most likely
when you don’t have your own internal binary repository and module publishing
mechanism established.

Whether you are managing static dependencies due to old technology or pragmatic
necessity, Gradle is ready to support you. It is able to resolve dependencies against a
local directory, just as if that directory were a source of Maven- or Ivy-style artifacts.
Example 4-27 shows how to declare a flat directory repository.

Example 4-27. Declaring a flat directory repository
repositories {
 flatDir dirs: "${projectDir}/lib"
}

That declaration will cause Gradle to look in a directory called lib located at the project
root, using the idiom common to the Ant builds of a decade ago. However, this simple
declaration raises the question of how Gradle will construct filenames, since the group,
name, and version metadata is now missing from the ad-hoc “repository.” The answer
is that Gradle builds filenames using the [group]-[name]-[version]-[classifier].
[type] formula. Some examples of how dependency declarations would be converted
into strings are in Table 4-2.

Table 4-2. Examples of dependency declaration to flatDir filename mappings
Dependency declaration Filename

'org.apache.solr:solr-core:1.4.1' org.apache.solr-solr-

core-1.4.1.jar

name: 'commons-codec', version: '1.6' commons-codec-1.6.jar

name: 'ratpack-core', version: '0.8', classifier:

'source', type: 'zip'

ratpack-core-0.8-source.zip

name: 'commons-logging' commons-logging.jar

As you can see, the more compact 'group:name:version' declaration, which is com‐
mon when resolving dependencies against Maven repositories, might not serve as well
in the flatDir case. If you have versions in your JAR filenames, you will most often use
the combination of name and version in your dependency declarations. If you don’t
have versions in your JAR filenames, declare your dependencies with only a name at‐
tribute, and they’ll resolve properly against the flat dir.

In rare cases, you might have multiple directories of static files you’ll want Gradle to
check when it’s resolving dependencies. The syntax for declaring multiple directories is
shown in Example 4-28. Note that this example also shows how to apply a name to a
flatDir repo, just like we have with Maven and Ivy declarations.

62 | Chapter 4: Dependency Management

Example 4-28. Declaring a flat directory repository
repositories {
 flatDir name: 'staticFileRepo'
 dirs: ["${projectDir}/api-libs",
 "${projectDir}/framework-libs"]
}

Buildscript Dependencies
Most dependency and repository declarations in a build are concerned with the de‐
pendencies of the code being built: what modules are required to compile the code, to
compile the tests, to run the code, and so forth. However, since a Gradle build is a Groovy
program, we might choose to introduce external dependencies into the build script itself.

Let’s consider an example. Suppose we have a build that has a collection of Markdown
files in it, and one of the build’s tasks is to convert them into HTML. This is a perfect
job for a Copy task with a filter attached to it, but that filter has a lot of work to do! It
has to be a full-featured Markdown parser and HTML renderer. We definitely don’t
want to write that code ourselves.

Happily, the MarkdownJ project will do it for us, but now we need MarkdownJ classes
to be available to us not during our project’s compilation or execution, but during the
execution of the build script itself. The resulting build looks like Example 4-29.

Example 4-29. Using buildscript to add to the build classpath
buildscript {
 repositories {
 mavenCentral()
 }

 dependencies {
 classpath 'org.markdownj:markdownj:0.3.0-1.0.2b4'
 }
}

import com.petebevin.markdown.MarkdownProcessor

class MarkdownFilter extends FilterReader {
 MarkdownFilter(Reader input) {
 super(new StringReader(new MarkdownProcessor().markdown(input.text)))
 }
}

task markdown(type: Copy) {
 from 'src/markdown'
 include '*.md'
 into 'build/labs'
 rename { it - '.md' + '.html' }

Buildscript Dependencies | 63

http://daringfireball.net/projects/markdown/syntax
http://markdownj.org/

 filter MarkdownFilter
}

Note that the repositories and dependencies declarations inside the buildscript
block are identical to their conventional uses as described earlier in this chapter. The
one difference is the new dependency configuration: classpath. This is the only con‐
figuration you’ll use inside the buildscript block. It indicates that the dependencies
you’re providing will be available to the classloader during the rest of the build script
execution, which is exactly what we need. The line following the buildscript block is
an import of the MarkdownProcessor class, which is later used to configure the copy
task’s filter. We could bring any resolvable modules we’d like into the build in this same
way.

We can apply this same technique to load external plug-ins. As described in Chap‐
ter 2, plug-ins are merely JARs containing code that programs the Gradle plug-in API.
To apply a plug-in to a Gradle build, the plug-in has to be available in the classpath of
the build itself. If a plug-in is properly packaged and deployed to a binary repository
like Central, we can use the buildscript block to make it visible to the build script
(Example 4-30).

Example 4-30. Applying an external plug-in from a binary repository
buildscript {
 repositories {
 mavenCentral()
 }

 dependencies {
 classpath 'com.augusttechgroup:gradle-liquibase-plugin:0.7'
 }
}

apply plugin: 'liquibase'

Dependency Caching
It is one thing to be able to declare dependencies with a concise syntax and resolve them
against a variety of artifact repositories. It is another thing entirely to do this while
retaining the ability to execute builds quickly or run them when disconnected from the
network. To support these goals, Gradle offers a sophisticated dependency cache, con‐
taining features no dependency management system before it has offered.

Binary repository formats like Ivy and Maven expose both metadata (e.g., pom.xml and
ivy.xml files) and binary artifacts themselves (e.g., JAR files, source archives, JavaDoc
archives, etc.). In an important innovation, Gradle caches the metadata and artifacts
separately. This allows the dependency cache to avoid a significant category of build

64 | Chapter 4: Dependency Management

3. A repository is defined as a URL, a type (e.g., Maven, Ivy, etc.), and a layout. All Maven repos have the same
layout, but Ivy repos may differ.

problems that can lead to non-repeatable builds in enterprise environments and
elsewhere.

The trivial implementation of dependency caching would group all downloaded content
by its identifier, which is ostensibly the standard group:artifact:version vector used
to declare the dependency. However, the naive approach ignores the case in which dif‐
ferent binary modules are uploaded to separate repositories with the same version
number. This is always a pathological condition—the release management process
should have bumped up the version number in one of those two builds—but it is nev‐
ertheless a reality in practical build environments.

Gradle caches dependency metadata (pom.xml and ivy.xml) by the group ID, artifact
ID, version number, and the repository from which the dependency was resolved. Thus
for a dependency to be “resolved” means that it has been resolved against a particular
repository.3 To fetch the metadata for commons-codec:commons-codec:1.6 from your
internal Artifactory repository and from Central are not the same operation as far as
Gradle’s cache is concerned. This will lead to an increase in network requests during a
build, but only for small metadata files; it will only lead to more artifact downloading
when such downloading is the right thing to do.

There is, in effect, one metadata cache per repository, but Gradle maintains just one
artifact cache for all dependencies. Binary artifacts are stored by the SHA-1 hash code
of their contents, not the repo they came from or their group:artifact:version met‐
adata. Thus, all of the metadata caches share common access to a local, disk-based store
of downloaded binary artifacts. In the previous example, an internal Artifactory repo
may have a copy of commons-codec:commons-codec:1.6, and Maven Central may have
the same. If they are both legitimately serving the same JAR—as defined by both files
sharing the same SHA-1 hash code—then Gradle will only download the binary artifact
once, and store it in one place on disk. Gradle relies heavily on hashes to optimize
download performance; when resolving a dependency, it will first attempt to download
the much-smaller SHA from the repo, skipping the download if it determines that it
already has that content in the artifact cache.

There are a couple of important command line switches that impact the way Gradle
uses its dependency cache. The --offline switch tells Gradle to use cached dependen‐
cies, and not to attempt to re-resolve anything (e.g., changing dependencies) against
networked repositories. This is useful when working without a network connection or
when a needed repository is offline. The --refresh-dependencies switch, by contrast,
forces Gradle to go to the network to re-evaluate and re-fetch all dependency metadata.
It will not download redundant modules if an artifact with the matching SHA-1 is

Dependency Caching | 65

already present in the artifact cache. This can be useful to ensure that you are building
against the very latest of any changing or dynamic dependencies.

Configuring Resolution Strategy
Every dependency configuration has a resolution strategy associated with it. In most
builds, this strategy operates behind the scenes and out of the view of build masters and
developers alike, but dependency problems can arise that require its customization. At
present, there are three parts of the strategy that you can change: what to do when a
version conflict arises, whether to force versions of certain artifacts, and what caching
semantics to apply to changing and dynamic dependencies. Let’s look at these in turn.

Failing on Version Conflict
Since Gradle resolves dependencies transitively, two independently declared depen‐
dencies may result in conflicting versions of some module they both depend on. For
example, a web form processing API may depend on commons-collections:commons-
collections:3.2.1, whereas an older vendor-specific enterprise integration module
may rely on commons-collections:commons-collections:2.1. Gradle will detect that
different versions of the same module are in the dependency graph, and by default it
will choose the newer version. However, building the enterprise integration module
with Commons Collections 3.2.1 might not work. You might want to know about the
conflict and fail the build. You can do this, either globally or on a per-configuration
basis, as in Example 4-31.

Example 4-31. Failing the build when a dependency version conflict is detected
configurations.all {
 resolutionStrategy {
 failOnVersionConflict()
 }
}

Forcing Versions
Following the prior example, you may determine that the modules that declare the newer
dependency are simply trying to stay up-to-date in their dependency metadata, but are
in fact backward compatible with the older version of Commons Collections. Rather
than defaulting to the new version or failing the build, you might want to force Gradle
to use version 2.1 instead of 3.2.1 (Example 4-32).

66 | Chapter 4: Dependency Management

Example 4-32. Forcing a particular version of a given dependency
configurations.all {
 resolutionStrategy {
 force 'commons-collections:commons-collections:2.1'
 }
}

Cache Expiration
Statically declared releases like commons-collections:commons-collections:3.2.1
and commons-collections:commons-collections:2.1 are immutable artifacts. They
are published to repositories on the network, and can be downloaded from those re‐
positories through the mechanisms we’ve covered so far. Once downloaded, they are
highly amenable to caching, since they can be identified uniquely and they never change.
However, dynamic dependencies and changing dependencies are not immutable, and
so their caching semantics are subject to more customization.

Dynamic and changing modules are still cached, but since the artifact can become out-
of-date with respect to their identifiers, Gradle invalidates the cached versions after
some period of time. By default, both types of cached artifacts expire after 24 hours, but
both timeouts can be set to arbitrary periods (including zero) using the resolution
Strategy block. Again, you can change these settings on a per-configuration basis, or
uniformly to all configurations as shown in Example 4-33.

Example 4-33. Setting the dependency cache expiration policy.
configurations.all {
 resolutionStrategy {
 cacheDynamicVersionsFor 1, 'hour'
 cacheChangingModulesFor 0, 'seconds'
 }
}

Conclusion
Gradle has rich and customizable support for the current state of the art in dependency
management as it has evolved in the world of the JVM. It fully supports Maven and Ivy
repositories, and pragmatically adapts to legacy builds that use static dependency man‐
agement. Moreover, its dependency caching feature helps solve difficult build repeata‐
bility problems that afflict real-world enterprise builds. There are few dependency
management scenarios it can’t handle natively or be adapted to through a few easy
customizations.

Conclusion | 67

Afterword

If you’ve read through this short book and coded along with the examples, you’ve got a
solid grounding in many of the topics you’ll need as a Gradle power user. There is always
more to learn, but understanding Gradle’s philosophy of file operations, its amazing
plugin API, its build metaprogramming model, and its dependency management
scheme will get you most of the way you need to writing the intelligent custom builds
the future calls for.

To develop a custom build is to develop custom software. It is not merely to cobble
scripts together as a second-class activity, subservient to the “real” software that drives
the business domain. If you are using the techniques you’ve learned here, you are coding
in the highly specialized domain of your build. That body of software you create supports
every other line of code your team writes.

It is my hope that the material in this book moves you closer to mastering Gradle, using
this build tool to add more and more value to your software delivery pipeline as your
team’s build and deployment practices continue to evolve. This process is important,
and so your continued education in Gradle is important. I’m pleased to have offered
another small contribution to this end.

69

About the Author
Tim Berglund is a full-stack generalist and passionate teacher who loves coding, pre‐
senting, and working with people. He is founder and principal software developer at
the August Technology Group, a technology consulting firm focused on the JVM. He
is a speaker internationally and on the No Fluff Just Stuff tour in the United States, co-
presenter of the best-selling O’Reilly Git Master Class, and co-president of the Denver
Open Source User Group. He has recently been exploring build automation, non-
relational data stores, and abstract ideas, like how to make software architecture look
more like an ant colony. He lives in Littleton, Colorado, with the wife of his youth and
their three children.

Colophon
The animal on the cover of Gradle Beyond the Basics is a Belgian shepherd dog
(Tervuren).

The cover image is from Shaw’s General Zoology. The cover font is Adobe ITC Gara‐
mond. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed;
and the code font is Dalton Maag’s Ubuntu Mono.

	Copyright
	Table of Contents
	Preface
	Conventions Used in This Book
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. File Operations
	Copy Task
	Transforming Directory Structure
	Renaming Files During Copy

	Filtering and Transforming Files
	Keyword Expansion
	Filtering Line by Line
	Filtering File by File

	The File Methods
	file()
	files()
	fileTree()

	The FileCollection Interface
	Converting to a Set
	Converting to a Path String
	Module Dependencies as FileCollections
	Adding and Subtracting FileCollections
	SourceSets as FileCollections

	Lazy Files
	Conclusion

	Chapter 2. Custom Plug-Ins
	Plug-In Philosophy
	The Plug-In API
	The Example Plug-In
	Setup
	Sketching Out Your Plug-In
	Custom Liquibase Tasks
	Applying Yourself
	Extensions

	Packaging a Plug-In
	Conclusion

	Chapter 3. Build Hooks
	The Gradle Lifecycle: A Review
	Advising the Build Graph
	Advising Project Evaluation
	Global Project Loading and Evaluation Hooks
	Build Finished

	Rules
	Creating a Rule
	Dealing with Imperative Rule Code
	Generalizing Rules Beyond Tasks

	Conclusion

	Chapter 4. Dependency Management
	What Is Dependency Management?
	Dependency Concepts
	Configurations
	Module Dependencies
	Dynamic Versions
	File Dependencies
	Project Dependencies
	Internal Dependencies

	Repositories: Dependency Resolution
	Maven Repositories
	Ivy
	Repository Credentials
	Static Dependencies

	Buildscript Dependencies
	Dependency Caching
	Configuring Resolution Strategy
	Failing on Version Conflict
	Forcing Versions
	Cache Expiration

	Conclusion

	Afterword
	About the Author

