Thread Pool
本文使用 C++ 实现了一个简单的线程池。
#pragma once
#include <thread>
#include <mutex>
#include <condition_variable>
#include <queue>
#include <functional>
class ThreadPool {
public:
ThreadPool(int thread_cnt = std::thread::hardware_concurrency()) : stop(false) {
if (thread_cnt <= 0) {
thread_cnt = std::thread::hardware_concurrency();
}
for (auto i = 0; i < thread_cnt; i++) {
threads.emplace_back(std::thread([this]() {
while(true) {
std::unique_lock<std::mutex> lck(this->mu);
this->cond.wait(lck, [this] { return this->stop || !this->tasks.empty(); });
if (this->stop && this->tasks.empty()) {
return;
}
auto func = this->tasks.front();
this->tasks.pop();
lck.unlock();
func();
}
}));
}
}
~ThreadPool() {
std::unique_lock<std::mutex> lck(mu);
stop = true;
lck.unlock();
cond.notify_all();
for (auto &t: threads) {
t.join();
}
}
template<typename Func, typename... Args>
void enqueue(Func&& func, Args&&... args) {
std::lock_guard<std::mutex> lg(mu);
tasks.push([=]() { func(args...); });
cond.notify_one();
}
ThreadPool(const ThreadPool& other) = delete;
ThreadPool& operator=(const ThreadPool &other) = delete;
private:
std::vector<std::thread> threads;
std::queue<std::function<void()>> tasks;
std::mutex mu;
std::condition_variable cond;
bool stop;
};
上述实现单纯只是将任务放到队列中,线程在空闲的时候会从队列中取一个任务执行,但是没有办法获取返回值。在 progschj/ThreadPool 的实现中,使用 future
和 packaged_task
这两个特性,实现了可以获取任务的返回值,极大的提高了代码的通用性。下面贴出其源码:
#ifndef THREAD_POOL_H
#define THREAD_POOL_H
#include <vector>
#include <queue>
#include <memory>
#include <thread>
#include <mutex>
#include <condition_variable>
#include <future>
#include <functional>
#include <stdexcept>
class ThreadPool {
public:
ThreadPool(size_t);
template<class F, class... Args>
auto enqueue(F&& f, Args&&... args)
-> std::future<typename std::result_of<F(Args...)>::type>;
~ThreadPool();
private:
// need to keep track of threads so we can join them
std::vector< std::thread > workers;
// the task queue
std::queue< std::function<void()> > tasks;
// synchronization
std::mutex queue_mutex;
std::condition_variable condition;
bool stop;
};
// the constructor just launches some amount of workers
inline ThreadPool::ThreadPool(size_t threads)
: stop(false)
{
for(size_t i = 0;i<threads;++i)
workers.emplace_back(
[this]
{
for(;;)
{
std::function<void()> task;
{
std::unique_lock<std::mutex> lock(this->queue_mutex);
this->condition.wait(lock,
[this]{ return this->stop || !this->tasks.empty(); });
if(this->stop && this->tasks.empty())
return;
task = std::move(this->tasks.front());
this->tasks.pop();
}
task();
}
}
);
}
// add new work item to the pool
template<class F, class... Args>
auto ThreadPool::enqueue(F&& f, Args&&... args)
-> std::future<typename std::result_of<F(Args...)>::type>
{
using return_type = typename std::result_of<F(Args...)>::type;
auto task = std::make_shared< std::packaged_task<return_type()> >(
std::bind(std::forward<F>(f), std::forward<Args>(args)...)
);
std::future<return_type> res = task->get_future();
{
std::unique_lock<std::mutex> lock(queue_mutex);
// don't allow enqueueing after stopping the pool
if(stop)
throw std::runtime_error("enqueue on stopped ThreadPool");
tasks.emplace([task](){ (*task)(); });
}
condition.notify_one();
return res;
}
// the destructor joins all threads
inline ThreadPool::~ThreadPool()
{
{
std::unique_lock<std::mutex> lock(queue_mutex);
stop = true;
}
condition.notify_all();
for(std::thread &worker: workers)
worker.join();
}
#endif
Copyright © 2016-2024 by 赵军旺